為了了解某年段1000名學生的百米成績情況,隨機抽取了若干學生的百米成績,成績全部介于13秒與18秒之間,將成績按如下方式分成五組:第一組[13,14);第二組[14,15);……;第五組[17,18].按上述分組方法得到的頻率分布直方圖如圖3所示,已知圖中從左到右的前3個組的頻率之比為3∶8∶19,且第二組的頻數(shù)為8.

(1)將頻率當作概率,請估計該年段學生中百米成績在[16,17)內的人數(shù);
(2)求調查中隨機抽取了多少個學生的百米成績;
(3)若從第一、五組中隨機取出兩個成績,求這兩個成績的差的絕對值大于1秒的概率.

(1)320  (2)50  (3) 

解析試題分析:
(1)根據(jù)頻率分布直方圖可以得到第三組[16,17)的縱坐標和組距,相乘即可得到頻率,再與總數(shù)相乘即可得到該組的頻數(shù),即該年段學生中百米成績在[16,17)內的人數(shù).
(2)分別設出前三個組的頻率,根據(jù)三個組的頻率之比為和五個組的頻率之和為1即可得到前三個組各自的頻率,再根據(jù)第二組的頻率等于頻數(shù)與總數(shù)之比可求的總數(shù),即得到了隨機抽取的總數(shù).
(3)利用(1)(2)的結果可求出第一組與第五組各自的頻數(shù)(即人數(shù)),編號并列出抽取兩人的所有基本事件數(shù)和符合題目要求(即兩人來自不同的組)的基本事件數(shù),根據(jù)古典概型的概率計算公式即可求出相應的概率.
試題解析:
(1)由頻率分布直方圖可得在抽取的樣本中學生中百米成績在[16,17)內的頻率為,則該年段學生中百米成績在[16,17)內的人數(shù)為.
(2)設前三個組的頻率分別為x,y,z.則有  ,所以第二組的頻率為0.16,又因為第二組的頻數(shù)為8,所以隨機抽取的學生人數(shù)為,故隨機抽取了50名學生的百米長跑成績.
(3)由(1)(2)可得到第一組的頻數(shù)為,第五組的頻數(shù)為,分別編號為A,B,C,D,E,F,G(其中第一組為A,B,C),從這7名同學成績中選取兩人的基本事件有(A,B),(A,C),(A,D),(A,E),(A,F),(A,G),(B,C),(B,D),(B,E),(B,F),(B,G),(C,D),(C,E),(C,F),(C,G), (D,E),(D,F),(D,G),(E,F),(E,G),(F,G)共21個,而滿足兩個成績的差的絕對值大于1秒的基本事件有(A,D),(A,E),(A,F),(A,G),(B,D),(B,E),(B,F),(B,G),(C,D),(C,E),(C,F),(C,G)共12個,所以根據(jù)古典概型的概率計算公式得 ,故從第一、五組中隨機取出兩個成績,這兩個成績的差的絕對值大于1秒的概率為.
考點:古典概型 頻率分布直方圖 頻率

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

某班主任對全班50名學生學習積極性和對待班級工作的態(tài)度進行了調查,統(tǒng)計數(shù)據(jù)如下表所示:

 
積極參加班級工作
不太主動參加班級工作
合計
學習積極性高
18
7
25
學習積極性一般
6
19
25
合計
24
26
50
(1)如果隨機抽查這個班的一名學生,那么抽到積極參加班級工作的學生的概率是多少?抽到不太主動參加班級工作且學習積極性一般的學生的概率是多少?
(2)試運用獨立性檢驗的思想方法點撥:學生的學習積極性與對待班級工作的態(tài)度是否有關系?并說明理由.(參考下表)
P(K2≥k)
0.50
0.40
0.25
0.15
0.10
0.05
0.025
0.010
0.005
0.001
k
0.455
0.708
1.323
2.072
2.706
3.841
5.024
6.635
7.879
10.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

某中學高三年級從甲、乙兩個班級各選出七名學生參加數(shù)學競賽,他們取得的成績(滿分100分)的莖葉圖如圖所示,其中甲班學生的平均分是85,乙班學生成績的中位數(shù)是83.

(1)求xy的值;
(2)計算甲班七名學生成績的方差.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

某車間共有12名工人,隨機抽取6名,他們某日加工零件個數(shù)的莖葉圖如圖所示,其中莖為十位數(shù),葉為個位數(shù).

(1)根據(jù)莖葉圖計算樣本均值.
(2)日加工零件個數(shù)大于樣本均值的工人為優(yōu)秀工人.根據(jù)莖葉圖推斷該車間12名工人中有幾名優(yōu)秀工人?
(3)從該車間12名工人中,任取2人,求恰有1名優(yōu)秀工人的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

空氣質量指數(shù)(單位:)表示每立方米空氣中可入肺顆粒物的含量,這個值越高,就代表空氣污染越嚴重:

日均濃度






空氣質量級別
一級
二級
三級
四級
五級
六級
空氣質量類別
優(yōu)

輕度污染
中度污染
重度污染
嚴重污染
某市日—日(天)對空氣質量指數(shù)進行監(jiān)測,獲得數(shù)據(jù)后得到如下條形圖.

(1)估計該城市一個月內空氣質量類別為優(yōu)的概率;
(2)從空氣質量級別為三級和四級的數(shù)據(jù)中任取個,求恰好有一天空氣質量類別為中度污染的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

某車間共有12名工人,隨機抽取6名,他們某日加工零件個數(shù)的莖葉圖如圖所示,其中莖為十位數(shù),葉為個位數(shù).

(1)根據(jù)莖葉圖計算樣本均值;
(2)日加工零件個數(shù)大于樣本均值的工人為優(yōu)秀工人.根據(jù)莖葉圖推斷該車間12名工人中有幾名優(yōu)秀工人?
(3)從該車間12名工人中,任取2人,求恰有1名優(yōu)秀工人的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2012年3月2日,國家環(huán)保部發(fā)布了新修訂的《環(huán)境空氣質量標準》.其中規(guī)定:居民區(qū)中的PM2.5(PM2.5是指大氣中直徑小于或等于2.5微米的顆粒物,也稱可入肺顆粒物)年平均濃度不得超過35微克/立方米,PM2.5的24小時平均濃度不得超過75微克/立方米.某城市環(huán)保部門隨機抽取了一居民區(qū)去年40天的PM2.5的24小時平均濃度的監(jiān)測數(shù)據(jù),數(shù)據(jù)統(tǒng)計如下:

組別
PM2.5(微克/立方米)
頻數(shù)(天)
頻率
第一組
(0,15]
4
0.1
第二組
(15,30]
12
0.3
第三組
(30,45]
8
0.2
第四組
(45,60]
8
0.2
第五組
(60,75]
4
0.1
第六組
(75,90)
4
0.1
(1)寫出該樣本的眾數(shù)和中位數(shù)(不必寫出計算過程);
(2)求該樣本的平均數(shù),并根據(jù)樣本估計總體的思想,從PM2.5的年平均濃度考慮,判斷該居民區(qū)的環(huán)境是否需要改進?說明理由;
(3)將頻率視為概率,對于去年的某2天,記這2天中該居民區(qū)PM2.5的24小時平均濃度符合環(huán)境空氣質量標準的天數(shù)為X,求X的分布列及數(shù)學期望E(X).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

某高校在2012年自主招生考試成績中隨機抽取100名學生的筆試成績,按成績分組:第1組[75,80),第2組[80,85),第3組[85,90),第4組[90,95),第5組[95,100]得到的頻率分布直方圖如圖所示.

(1)分別求第3,4,5組的頻率;
(2)若該校決定在筆試成績較高的第3,4,5組中用分層抽樣抽取6名學生進入第二輪面試,
(ⅰ)已知學生甲和學生乙的成績均在第三組,求學生甲和學生乙恰有一人進入第二輪面試的概率;
(ⅱ)學校決定在這已抽取到的6名學生中隨機抽取2名學生接受考官L的面試,設第4組中有名學生被考官L面試,求的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

某調查公司在一服務區(qū)從七座以下小型汽車中按進服務區(qū)的先后每間隔50輛就抽取一輛的抽樣方法抽取40名駕駛員進行詢問調查,將他們在某段高速公路的車速(km/t)分成六段:后得到如圖4的頻率分布直方圖.

問:(1)求這40輛小型車輛車速的眾數(shù)和中位數(shù)的估計值.(2)若從車速在的車輛中任抽取2輛,求抽出的2輛車中車速在的車輛數(shù)的分布列及其均值(即數(shù)學期望).

查看答案和解析>>

同步練習冊答案