如圖所示,在直三菱柱ABC-A1B1C1中,CA⊥CB,CA=CB=1,AA1=2,且N是棱A1B1的中點(diǎn),
(Ⅰ)求證:A1B⊥C1N;
(Ⅱ)求直線A1B和直線B1C夾角的余弦值.
考點(diǎn):異面直線及其所成的角,棱柱的結(jié)構(gòu)特征
專題:空間位置關(guān)系與距離,空間角
分析:(I)由C1A1=C1B1,且N是棱A1B1的中點(diǎn),可得C1N⊥A1B1.由直三菱柱ABC-A1B1C1可得:AA1⊥C1N,利用線面垂直的判定與性質(zhì)即可得出.
(II)建立空間直角坐標(biāo)系,利用向量的夾角公式即可得出.
解答: 解:(I)∵C1A1=C1B1,且N是棱A1B1的中點(diǎn),∴C1N⊥A1B1
由直三菱柱ABC-A1B1C1可得:AA1⊥C1N,又AA1∩A1B1=A1,
∴C1N⊥平面A1B.
∴C1N⊥A1B.
(II)A1(1,0,2),B(0,1,0),B1(0,1,2).
A1B
=(-1,1,-2),
CB1
=(0,1,2).
cos<
A1B
,
CB1
=
A1B
CB1
|
A1B
||
CB1
|
=
-3
6
×
5
=-
30
10

∴直線A1B和直線B1C夾角的余弦值為
30
10
點(diǎn)評:本題考查了線面垂直的判定與性質(zhì)、利用向量的夾角公式求異面直線的夾角,考查了計(jì)算能力,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知α是第三象限角,則下列等式中能成立的是( 。
A、sinα+cosα=1.2
B、sinα+cosα=-0.9
C、sinαcosα=
3
D、sinα+cosα=-1.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某聯(lián)歡晚會舉行抽獎活動,舉辦方設(shè)置了甲、乙兩種抽獎方案,方案甲的中獎率為
1
2
,中獎可以獲得3分;方案乙的中獎率為
2
3
,中獎可以得2分;未中獎則不得分,每人有且只有兩次抽獎機(jī)會,每次抽獎中獎與否互不影響,晚會結(jié)束后憑分?jǐn)?shù)兌換獎品.
(Ⅰ)若小亮選擇方案甲、方案乙各抽獎一次,求他的累計(jì)得分不為零的概率;
(Ⅱ)若小亮的抽獎方式是在方案甲、或方案乙中選擇其一連抽兩次,或選擇方案甲、方案乙各抽一次,求小亮選擇哪一種方式抽獎,累計(jì)得分的數(shù)學(xué)期望較大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線l:(2+m)x+(1+2m)y+4-3m=0.
(1)求證:不論m為何實(shí)數(shù),直線l恒過一定點(diǎn)M;
(2)過定點(diǎn)M作一條直線l1,使夾在兩坐標(biāo)軸之間的線段被M點(diǎn)平分,求直線l1的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=x3-3bx+b在區(qū)間(0,1)內(nèi)有極小值,則b應(yīng)滿足的條件是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定圓M:(x+1)2+y2=16,動圓N過點(diǎn)D(1,0),且和圓M相切,記動圓的圓心N的軌跡為C.
(Ⅰ)求曲線C的軌跡方程;
(Ⅱ)已知圓O:x2+y2=3在y軸右邊部分上有一點(diǎn)P,過點(diǎn)P作該圓的切線l:y=kx+m,且直線l交曲線C于A、B兩點(diǎn),求△ABD的周長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的離心率為
3
2
,且經(jīng)過點(diǎn)A(0,-1)
(1)求橢圓的方程;
(2)橢圓C的短軸端點(diǎn)分別為A、B,直線AM、BM分別與橢圓C交于E、F兩點(diǎn),其中點(diǎn)M(m,
1
2
)滿足m≠0且m≠±
3
,試證明直線EF與y軸交點(diǎn)的位置與m的值無關(guān).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)橢圓
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦點(diǎn)分別為F1,F(xiàn)2,點(diǎn)A為橢圓上一點(diǎn),當(dāng)△AF1F2的面積最大時,△AF1F2為等邊三角形.
(Ⅰ)求橢圓的離心率;
(Ⅱ)設(shè)動直線y=kx+m與橢圓有且只有一個公共點(diǎn)P,且與直線x=4相交于點(diǎn)Q,若x軸上存在一定點(diǎn)M(1,0),使得
PM
QM
=0,求橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)復(fù)數(shù)z=
1-2i
m-i
(m∈R)在復(fù)平面上對應(yīng)的點(diǎn)為Z.
(1)若點(diǎn)Z位于直線y=3x上,求m的值;
(2)若點(diǎn)Z位于第一象限,求m的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案