【題目】某公司準備上市一款新型轎車零配件,上市之前擬在其一個下屬4S店進行連續(xù)30天的試銷,定價為1000/.

1)設日銷售40個零件的概率為,記5天中恰有2天銷售40個零件的概率為,寫出關于的函數(shù)關系式,并求極大值點.

2)試銷結(jié)束后統(tǒng)計得到該4S店這30內(nèi)的日銷售量(單位:件)的數(shù)據(jù)如下表:

日銷售量

40

60

80

100

頻數(shù)

9

12

其中,有兩個數(shù)據(jù)未給出.試銷結(jié)束后,這款零件正式上市,每件的定價仍為1000元,但生產(chǎn)公司對該款零件不零售,只提供零件的整箱批發(fā),大箱每箱有55件,批發(fā)價為550/件;小箱每箱有40件,批發(fā)價為600/件,以這30天統(tǒng)計的各日銷售量的頻率作為試銷后各日銷售量發(fā)生的概率.4S店決定每天批發(fā)兩箱,若同時批發(fā)大箱和小箱,則先銷售小箱內(nèi)的零件,同時根據(jù)公司規(guī)定,當天沒銷售出的零件按批發(fā)價的9折轉(zhuǎn)給該公司的另一下屬4S店,假設日銷售量為80件的概率為,其中為(1)中的極大值點.

i)設該4S店批發(fā)兩大箱,當天這款零件的利潤為隨機變量;批發(fā)兩小箱,當天這款零件的利潤為隨機變量,求;

ii)以日利潤的數(shù)學期望作為決策依據(jù),該4S店每天應該按什么方案批發(fā)零件?

【答案】1,.2)(i=2.526萬元,=2.28萬元;(ii)兩大箱

【解析】

1)利用二項式定理求出關于函數(shù),對函數(shù)進行求導,利用導數(shù)判斷函數(shù)的單調(diào)性求出極大值點即可;

2)(i)利用(1)中的值,分別求出日銷售量為40件,60件,80件,100件的概率,然后求出批發(fā)為兩大箱時所對應的利潤,代入數(shù)學期望公式求出;求出批發(fā)為兩小箱時所對應的利潤,代入數(shù)學期望公式求出即可;

ii)設當該4S店批發(fā)一大箱和一小箱時,成本為54250元,當天這款零件的利潤為隨機變量,分別求出日銷售量分別為40件,60件,80件,100件的利潤,代入數(shù)學期望公式求出,比較、的大小即可.

1)由題意可得,

,

時,;當時,,

所以函數(shù)上單調(diào)遞增,在上單調(diào)遞減,

所以當時,函數(shù)有極大值,故.

2)由題意可知,日銷售量為80件的概率為

日銷售量為60件的概率為,日銷售量為40件的概率為

所以日銷售量為100的概率為.

i)批發(fā)兩大箱,則批發(fā)成本為60500元,

當日銷售量為40件時,利潤為(萬元);

當日銷售量為60件時,利潤為(萬元);

當日銷售量為80件時,利潤為(萬元);

當日銷售量為100件時,利潤為(萬元),

所以(萬元).

若批發(fā)兩小箱,則批發(fā)成本為48000元,

當日銷售量為40件時,利潤為(萬元);

當日銷售量為60件時,利潤為(萬元);

當日銷售量為80件或100件時,利潤為(萬元),

所以(萬元);

ii)當該4S店批發(fā)一大箱和一小箱時,成本為54250元,當天這款零件的利潤為隨機變量

當日銷售量為40件時,利潤為(萬元);

當日銷售量為60件時,利潤為(萬元);

當日銷售量為80件時,利潤為(萬元);

當日銷售量為100件時,利潤為(萬元);

所以(萬元),

所以,故該4S店每天應該批發(fā)兩大箱.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知雙曲線的兩頂點分別為,為雙曲線的一個焦點,為虛軸的一個端點,若在線段(不含端點)上存在兩點,,使得,則雙曲線的漸近線斜率的平方的取值范圍是( )

A.B.

C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】ABC的內(nèi)角AB,C所對應的邊分別為a,b,c

)若a,b,c成等差數(shù)列,證明:sinA+sinC=2sinA+C);

)若a,b,c成等比數(shù)列,求cosB的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】a,bR.則“關于x的方程有兩個不等實數(shù)根”是“a >|b|+1”的( )

A.充分不必要條件B.必要不充分條件

C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在發(fā)生某公共衛(wèi)生事件期間,有專業(yè)機構(gòu)認為該事件在一段時間沒有發(fā)生在規(guī)模群體感染的標志為連續(xù)10天,每天新增疑似病例不超過7”.根據(jù)過去10天甲、乙、丙、丁四地新增疑似病例數(shù)據(jù),一定符合該標志的是

A. 甲地:總體均值為3,中位數(shù)為4 B. 乙地:總體均值為1,總體方差大于0

C. 丙地:中位數(shù)為2,眾數(shù)為3 D. 丁地:總體均值為2,總體方差為3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某城市對一項惠民市政工程滿意程度(分值:分)進行網(wǎng)上調(diào)查,有2000位市民參加了投票,經(jīng)統(tǒng)計,得到如下頻率分布直方圖(部分圖):

現(xiàn)用分層抽樣的方法從所有參與網(wǎng)上投票的市民中隨機抽取位市民召開座談會,其中滿意程度在的有5人.

1)求的值,并填寫下表(2000位參與投票分數(shù)和人數(shù)分布統(tǒng)計);

滿意程度(分數(shù))

人數(shù)

2)求市民投票滿意程度的平均分(各分數(shù)段取中點值);

3)若滿意程度在5人中恰有2位為女性,座談會將從這5位市民中任選兩位發(fā)言,求男性甲或女性乙被選中的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某“芝麻開門”娛樂活動中,共有扇門,游戲者根據(jù)規(guī)則開門,并根據(jù)打開門的數(shù)量獲取相應獎勵.已知開每扇門相互獨立,且規(guī)則相同,開每扇門的規(guī)則是:從給定的把鑰匙(其中有且只有把鑰匙能打開門)中,隨機地逐把抽取鑰匙進行試開,鑰匙使用后不放回.若門被打開,則轉(zhuǎn)為開下一扇門;若連續(xù)次未能打開,則放棄這扇門,轉(zhuǎn)為開下一扇門;直至扇門都進行了試開,活動結(jié)束.

1)設隨機變量為試開第一扇門所用的鑰匙數(shù),求的分布列及數(shù)學期望;

2)求恰好成功打開扇門的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】2020年寒假,因為新冠疫情全體學生只能在家進行網(wǎng)上學習,為了研究學生網(wǎng)上學習的情況,某學校隨機抽取名學生對線上教學進行調(diào)查,其中男生與女生的人數(shù)之比為,抽取的學生中男生有人對線上教學滿意,女生中有名表示對線上教學不滿意.

1)完成列聯(lián)表,并回答能否有的把握認為對線上教學是否滿意 與性別有關;

態(tài)度

性別

滿意

不滿意

合計

男生

女生

合計

100

2)從被調(diào)查的對線上教學滿意的學生中,利用分層抽樣抽取名學生,再在這名學生中抽取名學生,作線上學習的經(jīng)驗介紹,求其中抽取一名男生與一名女生的概率.

附:.

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的長軸是短軸的兩倍,以短軸一個頂點和長軸一個頂點為端點的線段作直徑的圓的周長等于,直線l與橢圓C交于兩點,其中直線l不過原點.

1)求橢圓C的方程;

2)設直線的斜率分別為,其中.的面積為S.分別以為直徑的圓的面積依次為,求的最小值.

查看答案和解析>>

同步練習冊答案