5.已知y=f(x)為奇函數(shù),當(dāng)x≥0時(shí)f(x)=x(1-x),則當(dāng)x≤0時(shí),求f(x).

分析 由f(x)為奇函數(shù)且x>0時(shí),f(x)=x(1-x),設(shè)x<0則有-x>0,可得f(x)=-f(-x)=x(1+x).

解答 解:∵x>0時(shí),f(x)=x(1-x),
∴當(dāng)x<0時(shí),-x>0,則f(-x)=(-x)(1+x)
∵f(x)為奇函數(shù),
∴f(x)=-f(-x)=-(-x(1+x))=x(1+x),
即x<0時(shí),f(x)=x(1+x).

點(diǎn)評(píng) 本題主要考查利用函數(shù)的奇偶性求對(duì)稱區(qū)間上的解析式,要注意求哪區(qū)間上的解析式,要在哪區(qū)間上取變量,本題是一道基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.直線y=$\sqrt{3}$x+4與x軸和y軸的交點(diǎn)分別為A,B,以AB為邊做等邊三角形ABC,則頂點(diǎn)C的坐標(biāo)為(-$\frac{8\sqrt{3}}{3}$,4)或($\frac{4\sqrt{3}}{3}$,0).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.設(shè)函數(shù)f(x)=$\frac{{a}^{2x}-(t-1)}{{a}^{x}}$(a>0且a≠1)是定義域?yàn)镽的奇函數(shù).
(1)求t的值;
(2)若f(1)>0,求使不等式f(kx-x2)+f(x-1)<0對(duì)一切x∈R恒成立的實(shí)數(shù)k的取值范圍;
(3)若函數(shù)f(x)的圖象過點(diǎn)(1,$\frac{3}{2}$),是否存在正數(shù)m,且m≠1使函數(shù)g(x)=logm[a2x+a-2x-mf(x)]在[1,log23]上的最大值為0,若存在,求出m的值,若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.比較sin1,sin2與sin3的大小關(guān)系為sin3<sin1<sin2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.若函數(shù)y=a-bsinx的最大值為$\frac{3}{2}$,最小值為$-\frac{1}{2}$,
(1)求a,b的值;
(2)求函數(shù)y=-asinx取得最大值時(shí)的x的值;
(3)請(qǐng)寫出函數(shù)y=-asinx的對(duì)稱軸.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.若函數(shù)f(x)=sin(x+φ)cosx(0<φ<π)是偶函數(shù),則φ的值等于$\frac{π}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.實(shí)軸是虛軸的3倍,且經(jīng)過點(diǎn)P(3,0)的雙曲線的標(biāo)準(zhǔn)方程是$\frac{x^2}{9}-{y^2}=1$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.設(shè)a=2-0.5,b=log20152016,c=sin1830°,則a,b,c的大小關(guān)系是( 。
A.a>b>cB.a>c>bC.b>c>aD.b>a>c

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.若數(shù)列{an}滿足:對(duì)任意的n∈N*,只有有限個(gè)正整數(shù)m使得am<n成立,記這樣的m的個(gè)數(shù)為(an*,則得到一個(gè)新數(shù)列{(an*}.例如,若數(shù)列{an}是1,2,3…,n,…,則數(shù)列{(an*}是0,1,2,…n-1,…已知對(duì)任意的n∈N*,an=n2,則((an**=( 。
A.2nB.2n2C.nD.n2

查看答案和解析>>

同步練習(xí)冊(cè)答案