(2013•唐山一模)已知命題p:?x∈[
1
2
,1],
1
x
-a≥0
,命題q:?x∈R,x2+2ax+2-a=0.若p∧q是真命題,則實數(shù)a的取值范圍是( 。
分析:分別求出命題p,q成立的等價條件,利用p∧q是真命題,確定實數(shù)a的取值范圍.
解答:解:?x∈[
1
2
,1],
1
x
-a≥0
,則a≤
1
x
,∴a≤1,即p:a≤1.
若?x∈R,x2+2ax+2-a=0,則判別式△=4a2-4(2-a)≥0,即a2+a-2≥0,解得a≥1或a≤-2,
即q:a≥1或a≤-2.
∵p∧q是真命題,
∴p,q同時為真命題.
a≤1
a≥1或a≤-2
,解得a=1或a≤-2.
故選B.
點評:本題主要考查復(fù)合命題的與簡單命題真假之間的關(guān)系,求出命題p,q成立的等價條件是解決此類問題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2013•唐山一模)已知向量
a
,
b
滿足(
a
+2
b
)•(
a
-
b
)=-6,且|
a
|=1,|
b
|=2,則
a
b
的夾角為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•唐山一模)設(shè)集合A={1,2},則滿足A∪B={1,2,3,4}的集合B的個數(shù)是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•唐山一模)若復(fù)數(shù)
a-2i
1+i
(a∈R)
為純虛數(shù),則|3-ai|=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•唐山一模)如圖,四棱錐P-ABCD的底面是矩形,側(cè)面PAD丄底面ABCD,∠APD=
π2

(I )求證:平面PAB丄平面PCD;
(II)如果AB=BC,PB=PC,求二面角B-PC-D的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•唐山一模)己知函數(shù)f(x)=(mx+n)e-x在x=1處取得極值e-1
(I )求函數(shù)f(x)的解析式,并求f(x)的單調(diào)區(qū)間;
(II )當(dāng).x∈(a,+∞)時,f(2x-a)+f(a)>2f(x),求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案