【題目】已知f(x)=x2﹣ax+lnx,a∈R.
(1)當a=3時,求函數(shù)f(x)的極小值;
(2)令g(x)=x2﹣f(x),是否存在實數(shù)a,當x∈[1,e](e是自然對數(shù)的底數(shù))時,函數(shù)g(x)取得最小值為1.若存在,求出a的值;若不存在,說明理由.

【答案】
(1)解:由題可知,f(x)=x2﹣3x+lnx,所以

令f'(x)=0,得 或x=1

令f′(x)>0,解得:0<x< ,或x>1,

令f′(x)<0,解得: <x<1,

所以f(x)在 ,(1,+∞)單調遞增,在 上單調遞減

所以f(x)的極小值是f(1)=﹣2


(2)解:由題知,g(x)=ax﹣lnx,所以

①當a≤0時,g(x)在[1,e]上單調遞減,g(x)min=g(e)=ae﹣1=1,

解得: (舍去)

②當 時,g(x)在[1,e]上單調遞減,g(x)min=g(e)=ae﹣1=1,

解得: (舍去)

③當 時,g(x)在 上單調遞減,在 上單調遞增, ,

解得:a=1(舍去)

④當a≥1時,g(x)在[1,e]上單調遞增,g(x)min=g(1)=a=1,

解得:a=1

綜合所述:當a=1時,g(x)在[1,e]上有最小值1


【解析】(1)求出函數(shù)的導數(shù),解關于導函數(shù)的不等式,求出函數(shù)的單調區(qū)間即可;(2)求出函數(shù)g(x)的導數(shù),通過討論a的范圍,確定函數(shù)的單調性,從而確定a的范圍即可.
【考點精析】解答此題的關鍵在于理解利用導數(shù)研究函數(shù)的單調性的相關知識,掌握一般的,函數(shù)的單調性與其導數(shù)的正負有如下關系: 在某個區(qū)間內,(1)如果,那么函數(shù)在這個區(qū)間單調遞增;(2)如果,那么函數(shù)在這個區(qū)間單調遞減,以及對函數(shù)的極值與導數(shù)的理解,了解求函數(shù)的極值的方法是:(1)如果在附近的左側,右側,那么是極大值(2)如果在附近的左側,右側,那么是極小值.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】橢圓C: 過點M(2,0),且右焦點為F(1,0),過F的直線l與橢圓C相交于A,B兩點.設點P(4,3),記PA,PB的斜率分別為k1和k2

(1)求橢圓C的方程;
(2)如果直線l的斜率等于﹣1,求出k1k2的值;
(3)探討k1+k2是否為定值?如果是,求出該定值;如果不是,求出k1+k2的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知三棱柱ABC﹣A1B1C1的底面是銳角三角形,則存在過點A的平面(

A.與直線BC和直線A1B1都平行
B.與直線BC和直線A1B1都垂直
C.與直線BC平行且直線A1B1垂直
D.與直線BC和直線A1B1所成角相等

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD為平行四邊形,AP=AB=AC=a, ,PA⊥底面ABCD.
(1)求證:平面PCD⊥平面PAC;
(2)在棱PC上是否存在一點E,使得二面角B﹣AE﹣D的平面角的余弦值為 ?若存在,求出 的值?若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)是奇函數(shù),當x<0,f(x)=﹣x2+x,若不等式f(x)﹣x≤2logax(a>0且a≠1)對x∈(0, ]恒成立,則實數(shù)a的取值范圍是(
A.(0, ]
B.[ ,1)
C.(0, ]
D.[ , ]∪(1,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知f(x)=(x2﹣3)ex(其中x∈R,e是自然對數(shù)的底數(shù)),當t1>0時,關于x的方程[f(x)﹣t1][f(x)﹣t2]=0恰好有5個實數(shù)根,則實數(shù)t2的取值范圍是(
A.(﹣2e,0)
B.(﹣2e,0]
C.[﹣2e,6e3]
D.(﹣2e,6e3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】給出下列命題: ①若數(shù)列{an}為等差數(shù)列,Sn為其前n項和,則Sn , S2n﹣Sn , S3n﹣S2n是等差數(shù)列;
②若數(shù)列{an}為等比數(shù)列,Sn為其前n項和,則Sn , S2n﹣Sn , S3n﹣S2n是等比數(shù)列;
③若數(shù)列{an},{bn}均為等差數(shù)列,則數(shù)列{an+bn}為等差數(shù)列;
④若數(shù)列{an},{bn}均為等比數(shù)列,則數(shù)列{anbn}為等比數(shù)列
其中真命題的個數(shù)為(
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某校開設的校本課程分別有人文科學、自然科學、藝術體育三個課程類別,每種課程類別開設課程數(shù)及學分設定如下表所示:

人文科學類

自然科學類

藝術體育類

課程門數(shù)

4

4

2

每門課程學分

2

3

1

學校要求學生在高中三年內從中選修3門課程,假設學生選修每門課程的機會均等.
(Ⅰ)甲至少選1門藝術體育類課程,同時乙至多選1門自然科學類課程的概率為多少?
(Ⅱ)求甲選的3門課程正好是7學分的概率;
(Ⅲ)設甲所選3門課程的學分數(shù)為X,寫出X的分布列,并求出X的數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知隨機變量Z~N(1,1),其正態(tài)分布密度曲線如圖所示,若向正方形OABC中隨機投擲10000個點,則落入陰影部分的點的個數(shù)的估計值為( )
附:若Z~N(μ,σ2),則 P(μ﹣σ<Z≤μ+σ)=0.6826;P(μ﹣2σ<Z≤μ+2σ)=0.9544;P(μ﹣3σ<Z≤μ+3σ)=0.9974.

A.6038
B.6587
C.7028
D.7539

查看答案和解析>>

同步練習冊答案