15.設(shè)平面α∥平面β,直線a?α,點(diǎn)B∈β,則在β內(nèi)過(guò)點(diǎn)B的所有直線中( 。
A.不存在與a平行的直線B.存在唯一一條與a平行的直線
C.存在無(wú)數(shù)條與a平行的直線D.只有兩條與a平行的直線

分析 B點(diǎn)與a確定唯一的一個(gè)平面γ與β相交,設(shè)交線為b,由面面平行的性質(zhì)定理知a∥b.

解答 解:∵平面α∥平面β,直線a?α,點(diǎn)B∈β,
∴B點(diǎn)與a確定唯一的一個(gè)平面γ與β相交,
設(shè)交線為b,由面面平行的性質(zhì)定理知a∥b.
∴在β內(nèi)過(guò)點(diǎn)B的所有直線中,
存在唯一一條與a平行的直線.
故選:B.

點(diǎn)評(píng) 本題考查命題真假的判斷,是基礎(chǔ)題,解題進(jìn)要認(rèn)真審題,注意空間中線線、線面、面面間的位置關(guān)系的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.若定義在R上的偶函數(shù)f(x)對(duì)任意x1,x2∈[0,+∞)(x1≠x2),有$\frac{f({x}_{2})-f({x}_{1})}{{x}_{2}-{x}_{1}}$<0,則( 。
A.f(3)<f(-2)<f(1)B.f(1)<f(-2)<f(3)C.f(1)<f(3)<f(-2)D.f(-2)<f(3)<f(1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.已知記錄7名運(yùn)動(dòng)員選手身高(單位:cm)的莖葉圖如圖,其平均身高為177cm,因有一名運(yùn)動(dòng)員的身高記錄看不清楚,設(shè)其末位數(shù)為x,那么推斷x的值為( 。
A.5B.6C.7D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.下列四個(gè)函數(shù)中,在(0,1)上為增函數(shù)的是( 。
A.f(x)=-2x+1B.f(x)=-x2C.f(x)=-$\frac{1}{x}$D.f(x)=($\frac{1}{2}$)x

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.已知命題p:?x∈R,x2+ax+1>0,寫出¬q:?x∈R,x2+ax+1≤0;若命題p是假命題,則實(shí)數(shù)a的取值范圍是(-∞,-2]∪[2,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.函數(shù)y=x4-4x+3在區(qū)間[-2,3]上的最小值為( 。
A.72B.36C.2D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.在三棱錐S-ABC中,∠SAB=∠SAC=∠ACB=90°,且AC=BC=5,SB=5$\sqrt{5}$.
(1)證明:SC⊥BC;
(2)求三棱錐的體積VS-ABC
(3)求側(cè)面SBC與底面ABC所成二面角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.解不等式:
(1)(x+1)2(x-1)(x-2)3≤0;
(2)$\frac{{{{(x-1)}^2}(x+1)(x-2)}}{x+4}$<0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.命題“若a>-3,則a>0”以及它的逆命題、否命題、逆否命題中,真命題的個(gè)數(shù)為( 。
A.1B.2C.3D.4

查看答案和解析>>

同步練習(xí)冊(cè)答案