【題目】如圖,矩形ABCD中,點A在x軸上,點B的坐標為(1,0).且點C與點D在函數(shù)f(x)= 的圖象上.若在矩形ABCD內隨機取一點,則該點取自空白部分的概率等于(
A.
B.
C.
D.

【答案】A
【解析】解:由題意可得B(1,0),把x=1代入y=x+1可得y=2,即C(1,2), 把x=0代入y=x+1可得y=1,即圖中陰影三角形的第3個定點為(0,1),
令﹣ x+1=2可解得x=﹣2,即D(﹣2,2),
∴矩形的面積S=3×2=6,陰影三角形的面積S′= ×3×1=
∴所求概率P=1﹣ =
故選:A.
【考點精析】解答此題的關鍵在于理解幾何概型的相關知識,掌握幾何概型的特點:1)試驗中所有可能出現(xiàn)的結果(基本事件)有無限多個;2)每個基本事件出現(xiàn)的可能性相等.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù),.

(1)用函數(shù)單調性的定義在在證明:函數(shù)在區(qū)間上單調遞減,在上單調遞增;

(2)若對任意滿足的實數(shù),都有成立,求證:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)滿足,且上為增函數(shù),,則不等式的解集為__________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在正三棱錐S﹣ABC中,AB= ,M是SC的中點,AM⊥SB,則正三棱錐S﹣ABC外接球的球心到平面ABC的距離為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓C: + =1(a>b>0)的離心率為 ,以原點為圓心,橢圓的短半軸長為半徑的圓與直線 x﹣ y+12=0相切.
(1)求橢圓C的方程,
(2)設A(﹣4,0),過點R(3,0)作與x軸不重合的直線L交橢圓C于P,Q兩點,連接AP,AQ分別交直線x= 于M,N兩點,若直線MR、NR的斜率分別為k1 , k2 , 試問:k1 k2是否為定值?若是,求出該定值,若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)k為常數(shù),e為自然對數(shù)的底數(shù)),曲線在點(1, f (1))處的切線與x軸平行.

(1)求k的值;

(2)求的單調區(qū)間;

(3)設其中的導函數(shù),證明:對任意

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知,方程有三個實根,若,則實數(shù)( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)討論的單調性;

(2)當時,證明:恒成立.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知球O是正三棱錐(底面為正三角形,頂點在底面的射影為底面中心)A-BCD的外接球,BC=3,,點E在線段BD上,且BD=3BE,過點E作圓O的截面,則所得截面圓面積的取值范圍是__.

查看答案和解析>>

同步練習冊答案