【題目】【2017安徽馬鞍山二!已知動圓過定點,且在軸上截得的弦長為4,記動圓圓心的軌跡為曲線C.
(Ⅰ)求直線與曲線C圍成的區(qū)域面積;
(Ⅱ)點在直線上,點,過點作曲線C的切線、,切點分別為、,證明:存在常數(shù),使得,并求的值.
【答案】(Ⅰ)(Ⅱ)1
【解析】試題分析:可出設動圓圓心的坐標為,根據(jù)題設用直接法可得曲線方程;(Ⅰ)直線方程和曲線方程聯(lián)立求交點坐標,根據(jù)定積分求曲邊形面積可得結(jié)果;(Ⅱ)設、,,根據(jù)導數(shù)求切線斜率,設切線方程,由韋達定理、用,表示可得.
試題解析:(Ⅰ)設動圓圓心的坐標為,由題意可得,,化簡得,聯(lián)立方程組,解得或,所以直線與曲線C圍成的區(qū)域面積為;
(Ⅱ)設、,則由題意可得,切線的方程為,切線的方程為,再設點,從而有,所以可得出直線AB的方程為,即.
聯(lián)立方程組,得,又,所以有,
可得,
,
,
所以常數(shù).
【方法點晴】本題主要考查拋物線標準方程、定積分的應用以及解析幾何中的存在性問題,屬于難題.解決存在性問題,先假設存在,推證滿足條件的結(jié)論,若結(jié)論正確則存在,若結(jié)論不正確則不存在,注意:①當條件和結(jié)論不唯一時要分類討論;②當給出結(jié)論而要推導出存在的條件時,先假設成立,再推出條件;③當條件和結(jié)論都不知,按常規(guī)方法題很難時采取另外的途徑.
科目:高中數(shù)學 來源: 題型:
【題目】平面直角坐標系中,有橢圓 (為參數(shù))和拋物線 (為參數(shù)).
(Ⅰ)是否存在這樣的值,使得該橢圓與該拋物線有四個不同的交點?請說明理由.
(Ⅱ)當取何值時,該橢圓與該拋物線的交點與坐標原點的距離等于這個交點與該橢圓中心的距離?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
已知曲線的參數(shù)方程為(, 為參數(shù)),以坐標原點為極點, 軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為.
(1)求曲線的普通方程與曲線的直角坐標方程,并討論兩曲線公共點的個數(shù);
(2)若,求由兩曲線與交點圍成的四邊形面積的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),(其中, 為自然對數(shù)的底數(shù))
(Ⅰ)求函數(shù)的極值;
(Ⅱ)當時,若直線與曲線沒有公共點,求的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列函數(shù)中,滿足“f(x+y)=f(x)f(y)”的單調(diào)遞增函數(shù)是( )
A.f(x)=x
B.f(x)=x3
C.f(x)=( )x
D.f(x)=3x
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=2x的定義域是[0,3],設g(x)=f(2x)﹣f(x+2).
(1)求g(x)的解析式及定義域;
(2)求函數(shù)g(x)的最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】對任意實數(shù)a,b定義運算“⊙”:a⊙b= 設f(x)=2x+1⊙(1﹣x),若函數(shù)f(x)與函數(shù)g(x)=x2﹣6x在區(qū)間(m,m+1)上均為減函數(shù),且m∈{﹣1,0,1,3},則m的值為( )
A.0
B.﹣1或0
C.0或1
D.0或1或3
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】【2017湖南長沙二!磕撤N產(chǎn)品的質(zhì)量以其質(zhì)量指標值衡量,并依據(jù)質(zhì)量指標值劃分等極如下表:
質(zhì)量指標值 | |||
等級 | 三等品 | 二等品 | 一等品 |
從某企業(yè)生產(chǎn)的這種產(chǎn)品中抽取200件,檢測后得到如下的頻率分布直方圖:
(1)根據(jù)以上抽樣調(diào)查數(shù)據(jù),能否認為該企業(yè)生產(chǎn)的這種產(chǎn)品符合“一、二等品至少要占全部產(chǎn)品90%”的規(guī)定?
(2)在樣本中,按產(chǎn)品等極用分層抽樣的方法抽取8件,再從這8件產(chǎn)品中隨機抽取4件,求抽取的4件產(chǎn)品中,一、二、三等品都有的概率;
(3)該企業(yè)為提高產(chǎn)品質(zhì)量,開展了“質(zhì)量提升月”活動,活動后再抽樣檢測,產(chǎn)品質(zhì)量指標值近似滿足,則“質(zhì)量提升月”活動后的質(zhì)量指標值的均值比活動前大約提升了多少?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設x軸、y軸正方向上的單位向量分別是 、 ,坐標平面上點列An、Bn(n∈N*)分別滿足下列兩個條件:① = 且 = + ;② =4 且 = ×4 ;
(1)寫出 及 的坐標,并求出 的坐標;
(2)若△OAnBn+1的面積是an , 求an(n∈N*)的表達式;
(3)對于(2)中的an , 是否存在最大的自然數(shù)M,對一切n∈N*都有an≥M成立?若存在,求出M,若不存在,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com