【題目】已知函數(shù),
.
(1)若存在極小值,求實(shí)數(shù)
的取值范圍;
(2)設(shè)是
的極小值點(diǎn),且
,證明:
.
【答案】(1) .(2)見解析.
【解析】
(1)先求得導(dǎo)函數(shù),根據(jù)定義域?yàn)?/span>,可構(gòu)造函數(shù)
,通過求導(dǎo)及分類討論,即可求得
的取值范圍。
(2)由(1)令,通過分離參數(shù)得
,同時(shí)求對數(shù),根據(jù)函數(shù)
,可得
。構(gòu)造函數(shù)
及
,由導(dǎo)數(shù)即可判斷
的單調(diào)情況,進(jìn)而求得
的最小值,結(jié)合
即可證明不等式成立。
(1).
令,
則,
所以在
上是增函數(shù).
又因?yàn)楫?dāng)時(shí),
;
當(dāng)時(shí),
.
所以,當(dāng)時(shí),
,
,函數(shù)
在區(qū)間
上是增函數(shù),不存在極值點(diǎn);
當(dāng)時(shí),
的值域?yàn)?/span>
,
必存在使
.
所以當(dāng)時(shí),
,
,
單調(diào)遞減;
當(dāng)時(shí),
,
,
單調(diào)遞增;
所以存在極小值點(diǎn).
綜上可知實(shí)數(shù)的取值范圍是
.
(2)由(1)知,即
.
所以,
.
由,得
.
令,顯然
在區(qū)間
上單調(diào)遞減.
又,所以由
,得
.
令,
,
當(dāng)時(shí),
,函數(shù)
單調(diào)遞增;
當(dāng)時(shí),
,函數(shù)
單調(diào)遞減;
所以,當(dāng)時(shí),函數(shù)
取最小值
,
所以,即
,即
,
所以,
,
所以,
即.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列、
,其中,
,數(shù)列
滿足
,
,數(shù)列
滿足
.
(1)求數(shù)列、
的通項(xiàng)公式;
(2)是否存在自然數(shù),使得對于任意
有
恒成立?若存在,求出
的最小值;
(3)若數(shù)列滿足
,求數(shù)列
的前
項(xiàng)和
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2020年初,新冠肺炎疫情襲擊全國,某省由于人員流動(dòng)性較大,成為湖北省外疫情最嚴(yán)重的省份之一,截至2月29日,該省已累計(jì)確診1349例患者(無境外輸入病例).
(1)為了解新冠肺炎的相關(guān)特征,研究人員從該省隨機(jī)抽取100名確診患者,統(tǒng)計(jì)他們的年齡數(shù)據(jù),得下面的頻數(shù)分布表:
年齡 | |||||||||
人數(shù) | 2 | 6 | 12 | 18 | 22 | 22 | 12 | 4 | 2 |
由頻數(shù)分布表可以大致認(rèn)為,該省新冠肺炎患者的年齡服從正態(tài)分布img src="http://thumb.zyjl.cn/questionBank/Upload/2020/05/25/11/70cd3e4c/SYS202005251112216152234742_ST/SYS202005251112216152234742_ST.011.png" width="80" height="22" style="-aw-left-pos:0pt; -aw-rel-hpos:column; -aw-rel-vpos:paragraph; -aw-top-pos:0pt; -aw-wrap-type:inline" />,其中
近似為這100名患者年齡的樣本平均數(shù)(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表).請估計(jì)該省新冠肺炎患者年齡在70歲以上(
)的患者比例;
(2)截至2月29日,該省新冠肺炎的密切接觸者(均已接受檢測)中確診患者約占10%,以這些密切接觸者確診的頻率代替1名密切接觸者確診發(fā)生的概率,每名密切接觸者是否確診相互獨(dú)立.現(xiàn)有密切接觸者20人,為檢測出所有患者,設(shè)計(jì)了如下方案:將這20名密切接觸者隨機(jī)地按(
且
是20的約數(shù))個(gè)人一組平均分組,并將同組的
個(gè)人每人抽取的一半血液混合在一起化驗(yàn),若發(fā)現(xiàn)新冠病毒,則對該組的
個(gè)人抽取的另一半血液逐一化驗(yàn),記
個(gè)人中患者的人數(shù)為
,以化驗(yàn)次數(shù)的期望值為決策依據(jù),試確定使得20人的化驗(yàn)總次數(shù)最少的
的值.
參考數(shù)據(jù):若,則
,
,
,
,
,
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司生產(chǎn)了兩種產(chǎn)品投放市場,計(jì)劃每年對這兩種產(chǎn)品托人200萬元,每種產(chǎn)品一年至少投入20萬元,其中
產(chǎn)品的年收益
,
產(chǎn)品的年收益
與投入
(單位萬元)分別滿足
;若公司有100名銷售人員,按照對兩種產(chǎn)品的銷售業(yè)績分為普銷售、中級銷售以及金牌銷售,其中普銷售28人,中級銷售60人,金牌銷售12人
(1)為了使兩種產(chǎn)品的總收益之和最大,求
產(chǎn)品每年的投入
(2)為了對表現(xiàn)良好的銷售人員進(jìn)行獎(jiǎng)勵(lì),公司制定了兩種獎(jiǎng)勵(lì)方案:
方案一:按分層抽樣從三類銷售中總共抽取25人給予獎(jiǎng)勵(lì):普通銷售獎(jiǎng)勵(lì)2300元,中級銷售獎(jiǎng)勵(lì)5000元;金牌銷售獎(jiǎng)勵(lì)8000元
方案二:每位銷售都參加摸獎(jiǎng)游戲,游戲規(guī)則:從一個(gè)裝有3個(gè)白球,2個(gè)紅球(求只有顏色不同)的箱子中,有放回地莫三次球,每次只能摸一只球.若摸到紅球的總數(shù)為2,則可獎(jiǎng)勵(lì)1500元,若摸到紅球總數(shù)是3,則可獲得獎(jiǎng)勵(lì)3000元,其他情況不給予獎(jiǎng)勵(lì),規(guī)定普通銷售均可參加1次摸獎(jiǎng)游戲;中級銷售均可參加2次摸獎(jiǎng)游戲,金牌銷售均可參加3次摸獎(jiǎng)游戲(每次摸獎(jiǎng)的結(jié)果相互獨(dú)立,獎(jiǎng)勵(lì)疊加)
(�。┣蠓桨敢华�(jiǎng)勵(lì)的總金額;
(ⅱ)假設(shè)你是企業(yè)老板,試通過計(jì)算并結(jié)合實(shí)際說明,你會(huì)選擇哪種方案獎(jiǎng)勵(lì)銷售員.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給定一個(gè)數(shù)列,在這個(gè)數(shù)列里,任取
項(xiàng),并且不改變它們在數(shù)列
中的先后次序,得到的數(shù)列稱為數(shù)列
的一個(gè)
階子數(shù)列.
已知數(shù)列的通項(xiàng)公式為
(
為常數(shù)),等差數(shù)列
是
數(shù)列的一個(gè)3階子數(shù)列.
(1)求的值;
(2)等差數(shù)列是
的一個(gè)
階子數(shù)列,且
(
為常數(shù),
,求證:
;
(3)等比數(shù)列是
的一個(gè)
階子數(shù)列,
求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分12分)如圖,三棱柱ABC-A1B1C1中,CA=CB,AB=A A1,∠BA A1=60°.
(Ⅰ)證明AB⊥A1C;
(Ⅱ)若平面ABC⊥平面AA1B1B,AB=CB,求直線A1C 與平面BB1C1C所成角的正弦值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知中心在原點(diǎn),焦點(diǎn)在
軸上,離心率為
的橢圓過點(diǎn)
(1)求橢圓的方程;
(2)設(shè)不過原點(diǎn)的直線
與該橢圓交于
兩點(diǎn),滿足直線
的斜率依次成等比數(shù)列,求
面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在四棱錐中,底面
為正方形,
,
,
,
,
為
的中點(diǎn),
為棱
上的一點(diǎn).
(1)證明:面面
;
(2)當(dāng)為
中點(diǎn)時(shí),求二面角
余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】命題方程
表示雙曲線;命題
不等式
的解集是
.
為假,
為真,求
的取值范圍.
【答案】
【解析】試題分析:由命題方程
表示雙曲線,求出
的取值范圍,由命題
不等式
的解集是
,求出
的取值范圍,由
為假,
為真,得出
一真一假,分兩種情況即可得出
的取值范圍.
試題解析:
真
,
真
或
∴
真
假
假
真
∴范圍為
【題型】解答題
【結(jié)束】
18
【題目】如圖,設(shè)是圓
上的動(dòng)點(diǎn),點(diǎn)
是
在
軸上的投影,
為
上一點(diǎn),且
.
(1)當(dāng)在圓上運(yùn)動(dòng)時(shí),求點(diǎn)
的軌跡
的方程;
(2)求過點(diǎn)且斜率為
的直線被
所截線段的長度.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com