【題目】如圖,三棱柱中,,,,且平面⊥平面.
(1)求三棱柱的體積.
(2)點在棱上,且與平面所成角的余弦值為(),求的長.
【答案】(1)1;(2)
【解析】
(1)在平面內(nèi)過作與交于點,推導出平面,利用,解得,由此能求出三棱柱的高,從而可得結果;(2)先利用余弦定理與等腰三角形的性質(zhì)證明,以為坐標原點,以分別為軸, 軸, 軸,建立空間直角坐標系, ,利用向量垂直數(shù)量積為零,求得平面的法向量,利用空間向量夾角余弦公式可得結果.
(1)如圖,在平面內(nèi)過作與交于點,
因為平面平面,且平面平面,平面,
所以平面,所以為與平面所成角,
由公式,解得,
所以,,
又的面積為,所以三棱柱的體積為.
(2)由(1)得在中,為中點,連接,
由余弦定理得,解得,
所以,(或者利用余弦定理求)
以為坐標原點,以分別為軸, 軸, 軸,建立空間直角坐標系,
則,
所以
設 ,設平面的法向量為,
則,即,不妨令,則,即.
,
又因為與平面所成角的余弦值為,
所以 ,
解得或,
又因為,所以.
科目:高中數(shù)學 來源: 題型:
【題目】設橢圓的離心率,左焦點為,右頂點為,過點的直線交橢圓于兩點,若直線垂直于軸時,有.
(1)求橢圓的方程;
(2)設直線: 上兩點, 關于軸對稱,直線與橢圓相交于點(異于點),直線與軸相交于點.若的面積為,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】以橢圓:的中心為圓心,為半徑的圓稱為該橢圓的“準圓”,設橢圓的左頂點為,左焦點為,上頂點為,且滿足,.
(1)求橢圓及其“準圓"的方程;
(2)若過點的直線與橢圓交于、兩點,當時,試求直線交“準圓”所得的弦長;
(3)射線與橢圓的“準圓”交于點,若過點的直線,與橢圓都只有一個公共點,且與橢圓的“準圓”分別交于,兩點,試問弦是否為”準圓”的直徑?若是,請給出證明:若不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示將同心圓環(huán)均勻分成n()格.在內(nèi)環(huán)中固定數(shù)字1~n.問能否將數(shù)字1~n填入外環(huán)格內(nèi),使得外環(huán)旋轉任意格后有且僅有一個格中內(nèi)外環(huán)的數(shù)字相同?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設f(x)=ax2+(1-a)x+a-3.
(1)若不等式f(x)≥-3對一切實數(shù)x恒成立,求實數(shù)a的取值范圍;
(2)解關于x的不等式f(x)<a-2(a∈R).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的中心在原點,焦點在軸上,它的一個頂點恰好是拋物線的焦點,離心率等于.
(1)求橢圓的方程;
(2)過橢圓的右焦點作直線交橢圓于、兩點,交軸于點,若,,求證:為定值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列說法中錯誤的是__________(填序號)
①命題“,有”的否定是“”,有”;
②已知, , ,則的最小值為;
③設,命題“若,則”的否命題是真命題;
④已知, ,若命題為真命題,則的取值范圍是.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知以橢圓C:(a>b>0)的兩焦點與短軸的一個端點為頂點的三角形為等腰直角三角形,直線x+y+1=0與以橢圓C的右焦點為圓心,橢圓的長半軸長為半徑的圓相切.
(1)求橢圓C的方程;
(2)矩形ABCD的兩頂點C、D在直線y=x+2上,A、B在橢圓C上,若矩形ABCD的周長為,求直線AB的方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com