已知等差數(shù)列{an}的前n項(xiàng)和為sn,且s3=12,2a1,a2,a3+1成公比大于1的等比數(shù)列.
(1)求{an}的通項(xiàng)公式;
(2)bn=
1
anan+1
,求{bn}的前n項(xiàng)和Tn
(1)∵2a1,a2,a3+1成公比大于1的等比數(shù)列
a22=2a1(a3+1)
(a1+d)2=2a1(a1+2d+1)
∵3a1+3d=12
聯(lián)立①②可得,
a1=1
d=3
a1=8
d=-4

a2
2a1
1
a1=1
d=3
,an=1+3(n-1)=3n-2
(2)∵bn=
1
anan+1
=
1
(3n-2)(3n+1)
=
1
3
(
1
3n-2
-
1
3n+1
)

Tn=
1
3
(1-
1
4
+
1
4
-
1
7
+
1
7
-
1
10
+…+
1
3n-2
-
1
3n+1

=
1
3
(1-
1
3n+1
)
=
n
3n+1
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知等差數(shù)列{an},公差d不為零,a1=1,且a2,a5,a14成等比數(shù)列;
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)數(shù)列{bn}滿足bn=an3n-1,求數(shù)列{bn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知等差數(shù)列{an}中:a3+a5+a7=9,則a5=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知等差數(shù)列{an}滿足:a5=11,a2+a6=18.
(1)求{an}的通項(xiàng)公式;
(2)若bn=an+q an(q>0),求數(shù)列{bn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知等差數(shù)列{an}滿足a2=0,a6+a8=-10
(1)求數(shù)列{an}的通項(xiàng)公式;     
(2)求數(shù)列{|an|}的前n項(xiàng)和;
(3)求數(shù)列{
an2n-1
}的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知等差數(shù)列{an}中,a4a6=-4,a2+a8=0,n∈N*
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)若{an}為遞增數(shù)列,請(qǐng)根據(jù)如圖的程序框圖,求輸出框中S的值(要求寫出解答過(guò)程).

查看答案和解析>>

同步練習(xí)冊(cè)答案