【題目】已知拋物線和點,直線與拋物線交于不同兩點,,直線與拋物線交于另一點.給出以下判斷:
①直線與直線的斜率乘積為;
②軸;
③以為直徑的圓與拋物線準線相切.
其中,所有正確判斷的序號是( )
A.①②③B.①②C.①③D.②③
【答案】B
【解析】
由題意,可設直線的方程為,利用韋達定理判斷第一個結(jié)論;將代入拋物線的方程可得,,從而,,進而判斷第二個結(jié)論;設為拋物線的焦點,以線段為直徑的圓為,則圓心為線段的中點.設,到準線的距離分別為,,的半徑為,點到準線的距離為,顯然,,三點不共線,進而判斷第三個結(jié)論.
解:由題意,可設直線的方程為,
代入拋物線的方程,有.
設點,的坐標分別為,,
則,.
所.
則直線與直線的斜率乘積為.所以①正確.
將代入拋物線的方程可得,,從而,,
根據(jù)拋物線的對稱性可知,,兩點關(guān)于軸對稱,
所以直線軸.所以②正確.
如圖,設為拋物線的焦點,以線段為直徑的圓為,
則圓心為線段的中點.設,到準線的距離分別為,,的半徑為,點到準線的距離為,顯然,,三點不共線,
則.所以③不正確.
故選:B.
科目:高中數(shù)學 來源: 題型:
【題目】交大設計學院植物園準備用一塊邊長為4百米的等邊ΔABC田地(如圖)建立芳香植物生長區(qū)、植物精油提煉處與植物精油體驗點.田地內(nèi)擬建筆直小路MN、AP,其中M、N分別為AC、BC的中點,點P在CN上.規(guī)劃在小路MN和AP的交點O(O與M、N不重合)處設立植物精油體驗點,圖中陰影部分為植物精油提煉處,空白部分為芳香植物生長區(qū),A、N為出入口(小路寬度不計).為節(jié)約資金,小路MO段與OP段建便道,供芳香植物培育之用,費用忽略不計,為車輛安全出入,小路AO段的建造費用為每百米4萬元,小路ON段的建造費用為每百米3萬元.
(1)若擬建的小路AO段長為百米,求小路ON段的建造費用;
(2)設∠BAP=,求的值,使得小路AO段與ON段的建造總費用最小,并求岀最小建造總費用(精確到元).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖1,在邊長為2的菱形中,,于點,將沿折起到的位置,使,如圖2.
(1)求證:平面;
(2)在線段上是否存在點,使平面平面?若存在,求的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某校高三課外興趣小組為了了解高三同學高考結(jié)束后是否打算觀看2018年足球世界杯比賽的情況,從全校高三年級1500名男生、1000名女生中按分層抽樣的方式抽取125名學生進行問卷調(diào)查,情況如下表:
打算觀看 | 不打算觀看 | |
女生 | 20 | b |
男生 | c | 25 |
(1)求出表中數(shù)據(jù)b,c;
(2)判斷是否有99%的把握認為觀看2018年足球世界杯比賽與性別有關(guān);
(3)在打算觀看2018年足球世界杯比賽的同學中有5名男生、2名女生來自高三(5)班,從中推選5人接受校園電視臺采訪,請根據(jù)上述方法,求被推選出的5人中恰有四名男生、一名女生的概率.
附:
0.10 | 0.05 | 0.025 | 0.01 | 0.005 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在這智能手機爆發(fā)的時代,大部分高中生都有手機,在手機面前,有些學生無法抵御手機尤其是手機游戲和短視頻的誘惑,從而導致無法專心完成學習任務,成績下滑;但是對于自制力強,能有效管理自己的學生,手機不僅不會對他們的學習造成負面影響,還能成為他們學習的有力助手,我校某研究型學習小組調(diào)查研究“中學生使用智能手機對學習的影響”,部分統(tǒng)計數(shù)據(jù)如表:
參考數(shù)據(jù):,其中.
(1)試根據(jù)以上數(shù)據(jù),運用獨立性檢驗思想,指出有多大把握認為中學生使用手機對學習有影響?
(2)研究小組將該樣本中不使用手機且成績優(yōu)秀的同學記為組,使用手機且成績優(yōu)秀的同學記為組,計劃從組推選的4人和組推選的2人中,隨機挑選兩人來分享學習經(jīng)驗.求挑選的兩人中一人來自組、另一人來自組的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù), .
(1) 關(guān)于的方程在區(qū)間上有解,求的取值范圍;
(2) 當時, 恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐中,已知平面平面,且,為等邊三角形,,,.與平面所成角的正弦值為.
(1)證明:平面;
(2)若是的中點,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】食品安全問題越來越引起人們的重視,農(nóng)藥、化肥的濫用對人民群眾的健康帶來一定的危害,為了給消費者帶來放心的蔬菜,某農(nóng)村合作社每年投入200萬元,搭建了甲、乙兩個無公害蔬菜大棚,每個大棚至少要投入20萬元,其中甲大棚種西紅柿,乙大棚種黃瓜,根據(jù)以往的種菜經(jīng)驗,發(fā)現(xiàn)種西紅柿的年收入種黃瓜的年收入與投入(單位:萬元)滿足.設甲大棚的投入為(單位:萬元),每年兩個大棚的總收益為(單位:萬元)
(1)求的值;
(2)試問如何安排甲、乙兩個大棚的投入,才能使總收益最大?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com