【題目】已知a>0,b>0,c>0,函數(shù)f(x)=|x+a|﹣|x﹣b|+c的最大值為10.
(1)求a+b+c的值;
(2)求 (a﹣1)2+(b﹣2)2+(c﹣3)2的最小值,并求出此時a、b、c的值.

【答案】
(1)解:f(x)=|x+a|﹣|x﹣b|+c≤|b+a|+c,當且僅當x≥b時等號成立,

∵a>0,b>0,∴f(x)的最大值為a+b+c.

又已知f(x)的最大值為10,所以a+b+c=10.


(2)解:由(1)知a+b+c=10,由柯西不等式得[ (a﹣1)2+(b﹣2)2+(c﹣3)2](22+12+12)≥(a+b+c﹣6)2=16,

(a﹣1)2+(b﹣2)2+(c﹣3)2

當且僅當 (a﹣1)=b﹣2=c﹣3,即a= ,b= ,c= 時等號成立.


【解析】(1)利用絕對值不等式,求出f(x)的最大值為a+b+c,即可求a+b+c的值;(2)利用柯西不等式,即可得出結(jié)論.
【考點精析】解答此題的關(guān)鍵在于理解二維形式的柯西不等式的相關(guān)知識,掌握二維形式的柯西不等式:當且僅當時,等號成立.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=ex(x﹣b)(b∈R).若存在x∈[ ,2],使得f(x)+xf′(x)>0,則實數(shù)b的取值范圍是(
A.(﹣∞,
B.(﹣∞,
C.(﹣
D.( ,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù) ,其中a,b,c∈R.
(Ⅰ)若a=b=1,求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)若a=0,且當x≥0時,f(x)≥1總成立,求實數(shù)b的取值范圍;
(Ⅲ)若a>0,b=0,若f(x)存在兩個極值點x1 , x2 , 求證;f(x1)+f(x2)<e.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知正實數(shù)a,b滿足:a+b=2.
(1)求 的最小值m;
(2)設(shè)函數(shù)f(x)=|x﹣t|+|x+ |(t≠0),對于(Ⅰ)中求得的m,是否存在實數(shù)x,使得f(x)=m成立,若存在,求出x的取值范圍,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】PM2.5是指大氣中直徑小于或等于2.5微米的顆粒物,也稱為可入肺顆粒物.我國PM2.5標準采用世衛(wèi)組織設(shè)定的最寬限值,即PM2.5日均值在35微克/立方米以下空氣質(zhì)量為一級;在35微克/立方米~75微克/立方米之間空氣質(zhì)量為二級;在75微克/立方米以上空氣質(zhì)量為超標. 某市環(huán)保局從市區(qū)2016年全年每天的PM2.5監(jiān)測數(shù)據(jù)中隨機抽取15天的數(shù)據(jù)作為樣本,監(jiān)測值如莖葉圖所示(十位為莖,個位為葉)
(Ⅰ)從這15天的數(shù)據(jù)中任取一天,求這天空氣質(zhì)量達到一級的概率;
(Ⅱ)從這15天的數(shù)據(jù)中任取3天的數(shù)據(jù),記ξ表示其中空氣質(zhì)量達到一級的天數(shù),求ξ的分布列;
(Ⅲ)以這15天的PM2.5的日均值來估計一年的空氣質(zhì)量情況,(一年按360天來計算),則一年中大約有多少天的空氣質(zhì)量達到一級.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知D,E是△ABC邊BC的三等分點,點P在線段DE上,若 =x +y ,則xy的取值范圍是(
A.[ , ]
B.[ , ]
C.[ , ]
D.[ ]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在以A,B,C,D,E,F(xiàn)為頂點的多面體中,四邊形ACDF是菱形,∠FAC=60°,AB∥DE,BC∥EF,AB=BC=3,AF=2
(1)求證:平面ABC⊥平面ACDF;
(2)求平面AEF與平面ACE所成的銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)= ,若函數(shù)f(x)有最大值M,則M的取值范圍是(
A.( ,0)
B.(0, ]
C.(0, ]
D.( , ]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)數(shù)列{an}是公差大于0的等差數(shù)列,Sn為數(shù)列{an}的前n項和,已知S3=9,且2a1 , a3﹣1,a4+1構(gòu)成等比數(shù)列.
(1)求數(shù)列{an}的通項公式;
(2)若數(shù)列{bn}滿足 =2n1(n∈N*),設(shè)Tn是數(shù)列{bn}的前n項和,證明:Tn<6.

查看答案和解析>>

同步練習冊答案