【題目】在四棱錐中,已知
分別是
的中點,若
是平行四邊形,
(1)求證:平面
(2)若平面
,求證:
【答案】(1)見解析(2)見解析
【解析】
(1) 取PA中點E,根據(jù)平幾知識可得四邊形BMNE為平行四邊形,再根據(jù)線面平行判定定理得結論,(2)先根據(jù)線面垂直判定定理得AC⊥平面PAB,即得AC⊥BE,再根據(jù)平行關系得結果.
(1)取PA中點E,連結BE,NE
因為N為PD中點,所以,EN∥AD,且EN=AD,
又M為BC中點,是平行四邊形,所以 BM∥AD,且BM=
AD,
所以,BM∥EN且BM=EN
所以,四邊形BMNE為平行四邊形,
所以,MN∥BE,而MN平面PAB,BE
平面PAB
所以,MN∥平面PAB。
(2)∵ ∴AC⊥AB,
∵PA⊥平面ABCD,∴PA⊥AC
∵PA∩AB=A,∴AC⊥平面PAB,
∵BE平面PAB,∴AC⊥BE
由(1)知,BE∥MN,∴AC⊥MN
科目:高中數(shù)學 來源: 題型:
【題目】將函數(shù)的圖像向右平移
個單位后得到函數(shù)
,則
具有性質( )
A.最大值為1,圖像關于直線對稱
B.周期為,圖像關于點
對稱
C.在上單調遞增,為偶函數(shù)
D.在上單調遞減,為奇函數(shù)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知動點M到定點F1(-2,0)和F2(2,0)的距離之和為.
(1)求動點M軌跡C的方程;
(2)設N(0,2),過點P(-1,-2)作直線l,交橢圓C于不同于N的A,B兩點,直線NA,NB的斜率分別為k1,k2,問k1+k2是否為定值?若是的求出這個值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=,若g(x)=f(x)-a恰好有3個零點,則a的取值范圍為( )
A. B.
C.
D.
【答案】D
【解析】
恰好有3個零點, 等價于
的圖象有三個不同的交點,
作出的圖象,根據(jù)數(shù)形結合可得結果.
恰好有3個零點,
等價于有三個根,
等價于的圖象有三個不同的交點,
作出的圖象,如圖,
由圖可知,
當時,
的圖象有三個交點,
即當時,
恰好有3個零點,
所以,的取值范圍是
,故選D.
【點睛】
本題主要考查函數(shù)的零點與分段函數(shù)的性質,屬于難題. 函數(shù)的性質問題以及函數(shù)零點問題是高考的高頻考點,考生需要對初高中階段學習的十幾種初等函數(shù)的單調性、奇偶性、周期性以及對稱性非常熟悉;另外,函數(shù)零點的幾種等價形式:函數(shù)的零點
函數(shù)
在
軸的交點
方程
的根
函數(shù)
與
的交點.
【題型】單選題
【結束】
13
【題目】設集合A={0,log3(a+1)},B={a,a+b}若A∩B={1},則b=______.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知點是拋物線
的焦點,若點
在拋物線
上,且
求拋物線
的方程;
動直線
與拋物線
相交于
兩點,問:在
軸上是否存在定點
其中
,使得向量
與向量
共線
其中
為坐標原點
?若存在,求出點
的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,公路圍成的是一塊頂角為
的角形耕地,其中
,在該塊土地中
處有一小型建筑,經(jīng)測量,它到公路
的距離分別為
,現(xiàn)要過點
修建一條直線公路
,將三條公路圍成的區(qū)域
建成一個工業(yè)園.
(1)以為坐標原點建立適當?shù)钠矫嬷苯亲鴺讼�,并求�?/span>
點的坐標;
(2)三條公路圍成的工業(yè)園區(qū)的面積恰為
,求公路
所在直線方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知曲線的極坐標方程是
.以極點為平面直角坐標系的原點,極軸為
軸的正半軸,建立平面直角坐標系,直線
的參數(shù)方程是
(
為參數(shù)).
(Ⅰ)將曲線的極坐標方程化為直角坐標方程;
(Ⅱ)若直線與曲線
相交于
,
兩點,且
,求直線
的傾斜角
的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在數(shù)列{an}中,a1=2,a2=4,且當n≥2時,an2=an-1an+1,;
(1)求數(shù)列{an}的通項公式an;
(2)若bn=(2n-1)an,求數(shù)列{bn}的前n項和Sn.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com