(2013•南通一模)定義在R上的函數(shù)f(x),對任意x∈R都有f(x+2)=f(x),當(dāng)x∈(-2,0)時,f(x)=4x,則f(2013)=
1
4
1
4
分析:利用函數(shù)的周期性把要求的式子化為f(-1),再利用x∈(-2,0)時,f(x)=4x,求得 f(-1)的值.
解答:解:∵定義在R上的函數(shù)f(x),對任意x∈R都有f(x+2)=f(x),則f(2013)=f(2×1006+1)=f(1)=f(-1).
∵當(dāng)x∈(-2,0)時,f(x)=4x,∴f(-1)=4-1=
1
4

故答案為
1
4
點評:本題主要考查利用函數(shù)的周期性求函數(shù)的值,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2013•南通一模)已知雙曲線
x2
a2
-
y2
b2
=1
的一個焦點與圓x2+y2-10x=0的圓心重合,且雙曲線的離心率等于
5
,則該雙曲線的標(biāo)準(zhǔn)方程為
x2
5
-
y2
20
=1
x2
5
-
y2
20
=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•南通一模)已知命題p:“正數(shù)a的平方不等于0”,命題q:“若a不是正數(shù),則它的平方等于0”,則p是q的
否命題
否命題
.(從“逆命題、否命題、逆否命題、否定”中選一個填空)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•南通一模)曲線f(x)=
f′(1)
e
ex-f(0)x+
1
2
x2
在點(1,f(1))處的切線方程為
y=ex-
1
2
y=ex-
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•南通一模)若Sn為等差數(shù)列{an}的前n項和,S9=-36,S13=-104,則a5與a7的等比中項為
±4
2
±4
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•南通一模)已知數(shù)列{an}滿足:a1=2a-2,an+1=aan-1+1 (n∈N*)
(1)若a=-1,求數(shù)列{an}的通項公式;
(2)若a=3,試證明:對?n∈N*,an是4的倍數(shù).

查看答案和解析>>

同步練習(xí)冊答案