已知函數(shù)f(x)=
1+a•2x
2x+1
是奇函數(shù),
(1)求實(shí)數(shù)a的值
(2)判斷函數(shù)f(x)在R上的單調(diào)性,并用定義加以證明.
考點(diǎn):函數(shù)單調(diào)性的判斷與證明,函數(shù)奇偶性的性質(zhì)
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:(1)由f(0)=0,解出即可;(2)根據(jù)題目要求,利用定義證明即可.
解答: (1)解:∵f(x)是奇函數(shù),
∴f(0)=0,∴a=-1;
(2):由(1)得:
f(x)=
1-2x
1+2x
=-1+
2
1+2x
,
證明:?x1,x2∈R,令x1<x2
則f(x1)-f(x2)=
2(2x2-2x1)
(1+2x1)(1+2x2)
,
∵x1<x2,∴2x12x2,
∴f(x1 )>f(x2),
∴f(x)在R上是減函數(shù).
點(diǎn)評(píng):本題考查了函數(shù)的單調(diào)性的證明問(wèn)題,利用定義證明是基本的方法之一,本題是一道基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

將直線x+2y+1=0繞著它與y軸的交點(diǎn),按順時(shí)針?lè)较蛐D(zhuǎn)
π
4
,得到直線l,則直線l的方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在數(shù)列{an}中,a1=1,a2=2,an=(-1)n×2an-2(n≥3,n∈N*),其前n項(xiàng)和為Sn
(1)求a2n+1關(guān)于n的表達(dá)式;
(2)觀察S1,S2,S3,S4,…,Sn,數(shù)列{Sn}的前100項(xiàng)中相等的項(xiàng)有幾對(duì)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

f(x)是定義在R上的奇函數(shù),且當(dāng)x<0時(shí),f(x)=x2-x,求當(dāng)x≥0時(shí),f(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

由花盆擺成如圖圖案,根據(jù)擺放規(guī)律,可得第5個(gè)圖形中的花盆數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知a,b,c是三角形的三邊,且直線ax+by+c=0與圓x2+y2=1相離,則此三角形(  )
A、是銳角三角形
B、是直角三角形
C、是鈍角三角形
D、不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知圓C經(jīng)過(guò)P(4,-2),Q(-1,3)兩點(diǎn),圓心C在第一象限且到直線3x+4y+4=0的距離為
14
5

(I)求直線PQ與圓C的方程;
(Ⅱ)是否存在直線l∥PQ,使得直線l與圓C交于點(diǎn)A、B,且以AB為直徑的圓經(jīng)過(guò)坐標(biāo)原點(diǎn),若存在求出直線l的方程,不存在說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知a=
8
+
5
,b=
7
+
6
,則a
 
b(填“>”或“<”).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)向量
a
,
b
滿足|
a
+
b
|=
6
,|
a
|=1,|
b
|=2,則
a
b
等于( 。
A、
1
5
B、
1
4
C、
1
3
D、
1
2

查看答案和解析>>

同步練習(xí)冊(cè)答案