已知方向向量為的直線(xiàn)l過(guò)橢圓的焦點(diǎn)以及點(diǎn)(0,),直線(xiàn)l與橢圓C交于 A 、B兩點(diǎn),且A、B兩點(diǎn)與另一焦點(diǎn)圍成的三角形周長(zhǎng)為。
(1)求橢圓C的方程
(2)過(guò)左焦點(diǎn)且不與x軸垂直的直線(xiàn)m交橢圓于M、N兩點(diǎn),(O坐標(biāo)原點(diǎn)),求直線(xiàn)m的方程
(1)
直線(xiàn)與x軸交點(diǎn)即為橢圓的右焦點(diǎn) ∴c=2
由已知⊿周長(zhǎng)為,則4a=,即,所以
故橢圓方程為 ………………………………4分
(2)橢圓的左焦點(diǎn)為,則直線(xiàn)m的方程可設(shè)為
代入橢圓方程得:
設(shè) ………6分
∵
所以,,即 ……………9分
又
原點(diǎn)O到m的距離,
則
解得
【解析】略
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(05年福建卷)(12分)
已知方向向量為的直線(xiàn)l過(guò)點(diǎn)(0,-2)和橢圓C:的焦點(diǎn),且橢圓C的中心關(guān)于直線(xiàn)l的對(duì)稱(chēng)點(diǎn)在橢圓C的右準(zhǔn)線(xiàn)上.
(Ⅰ)求橢圓C的方程;
(Ⅱ)是否存在過(guò)點(diǎn)E(-2,0)的直線(xiàn)m交橢圓C于點(diǎn)M、N,滿(mǎn)足,
cot∠MON≠0(O為原點(diǎn)).若存在,求直線(xiàn)m的方程;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知方向向量為的直線(xiàn)l過(guò)點(diǎn)()和橢圓的焦點(diǎn),且橢圓C的中心關(guān)于直線(xiàn)l的對(duì)稱(chēng)點(diǎn)在橢圓C的右準(zhǔn)線(xiàn)上.
(Ⅰ)求橢圓C的方程;
(Ⅱ)是否存在過(guò)點(diǎn)E(-2,0)的直線(xiàn)m交橢圓C于點(diǎn)M、N,滿(mǎn)足=,cot∠MON≠0(O為原點(diǎn)).若存在,求直線(xiàn)m的方程;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知方向向量為的直線(xiàn)過(guò)橢圓C:=1(a>b>0)的焦點(diǎn)以及點(diǎn)(0,),橢圓C的中心關(guān)于直線(xiàn)的對(duì)稱(chēng)點(diǎn)在橢圓C的右準(zhǔn)線(xiàn)上。
⑴求橢圓C的方程。
⑵過(guò)點(diǎn)E(-2,0)的直線(xiàn)交橢圓C于點(diǎn)M、N,且滿(mǎn)足,(O為坐標(biāo)原點(diǎn)),求直線(xiàn)的方程。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知方向向量為的直線(xiàn)點(diǎn)和橢圓的焦點(diǎn),且橢圓C的中心關(guān)于直線(xiàn)的對(duì)稱(chēng)點(diǎn)在橢圓C的右準(zhǔn)線(xiàn)上。
(1)求橢圓C的方程
(2)是否存在過(guò)點(diǎn)的直線(xiàn)交橢圓C于點(diǎn)M,N且滿(mǎn)足
(O為原點(diǎn)),若存在求出直線(xiàn)的方程,若不存在說(shuō)明理由。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com