已知橢圓C: +=1(a>b>0)的離心率為.雙曲線x2-y2=1的漸近線與橢圓C有四個(gè)交點(diǎn),以這四個(gè)交點(diǎn)為頂點(diǎn)的四邊形的面積為16,則橢圓C的方程為(  )

(A) +=1  (B) +=1

(C) +=1  (D) +=1

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:


設(shè)F1,F2是雙曲線C, -=1(a>0,b>0)的兩個(gè)焦點(diǎn).若在C上存在一點(diǎn)P,使PF1⊥PF2,且∠PF1F2=30°,則C的離心率為    . 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:


橢圓+=1(a>b>0)的左、右頂點(diǎn)分別是A、B,左、右焦點(diǎn)分別是F1、F2,若|AF1|,|F1F2|,|F1B|成等比數(shù)列,則此橢圓的離心率為(  )

(A)   (B) (C)   (D) -2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:


已知A、B分別為橢圓+=1(a>b>0)的左、右頂點(diǎn),C(0,b),直線l:x=2a與x軸交于點(diǎn)D,與直線AC交于點(diǎn)P,若∠DBP=,則此橢圓的離心率為(  )

(A)   (B) (C)   (D)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:


橢圓mx2+y2=1的焦點(diǎn)在y軸上,長(zhǎng)軸長(zhǎng)是短軸長(zhǎng)的3倍,則m=    . 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:


在平面直角坐標(biāo)系xOy中,已知橢圓C1: +=1(a>b>0)的左焦點(diǎn)為F1(-1,0),且點(diǎn)P(0,1)在C1上.

(1)求橢圓C1的方程;

(2)設(shè)直線l同時(shí)與橢圓C1和拋物線C2:y2=4x相切,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:


已知雙曲線C1: -=1(a>0,b>0)的離心率為2.若拋物線C2:x2=2py(p>0)的焦點(diǎn)到雙曲線C1的漸近線的距離為2,則拋物線C2的方程為(  )

(A)x2=y (B)x2=y

(C)x2=8y        (D)x2=16y

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:


點(diǎn)A是拋物線C1:y2=2px(p>0)與雙曲線C2: -=1(a>0,b>0)的一條漸近線的交點(diǎn),若點(diǎn)A到拋物線C1的準(zhǔn)線的距離為p,則雙曲線C2的離心率等于(  )

(A) (B)  (C)  (D)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:


變量UV相對(duì)應(yīng)的一組樣本數(shù)據(jù)為(1,1.4),(2,2.2),(3,3),(4,3.8),由上述樣本數(shù)據(jù)得到UV的線性回歸分析,R2表示解釋變量對(duì)于預(yù)報(bào)變量變化的貢獻(xiàn)率,則R2=(  )

A.  B.  C.1  D.3

查看答案和解析>>

同步練習(xí)冊(cè)答案