10.已知函數(shù)$f(x)=\sqrt{lg({2x-1})}$,求函數(shù)的定義域,并判斷它的奇偶性.

分析 利用被開方數(shù)非負(fù),求出函數(shù)的定義域,然后判斷函數(shù)的奇偶性.

解答 解:要使函數(shù)有意義,可得:lg(2x-1)≥0,解得x≥1,函數(shù)的定義域?yàn)椋篬1,+∞).
因?yàn)楹瘮?shù)的定義域不關(guān)于原點(diǎn)對(duì)稱,所以函數(shù)是非奇非偶函數(shù).

點(diǎn)評(píng) 本題考查函數(shù)的定義域的求法,函數(shù)的奇偶性的判斷,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.若關(guān)于x的二次函數(shù)f(x)=3ax2+(3-7a)x+4在(0,1)及(1,2)上各有一個(gè)零點(diǎn).則實(shí)數(shù)a的取值范圍是($\frac{7}{4}$,5).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.設(shè)奇函數(shù)f(x)在(0,+∞)上為增函數(shù),且f(3)=0,則不等式$\frac{f(x)-f(-x)}{2}$>0的解集為(  )
A.(-3,0)∪(3,+∞)B.(-3,0)∪(0,3)C.(-∞,-3)∪(3,+∞)D.(-∞,-3)∪(0,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.過點(diǎn)A(3,1)和B(1,3),圓心在直線2x-y=0上的圓的方程為x2+y2=10.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知△ABC三邊為a,b,c三邊所對(duì)角為A,B,C,滿足 acosC+$\frac{1}{2}$c=b.
(1)求角A.
(2)若a=1,求△ABC的周長的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.設(shè)$a={(\frac{1}{3})}^{\frac{1}{2}}$,b=${2}^{-\frac{1}{2}}$,c=lnπ,則a,b,c的大小關(guān)系為(  )
A.a<b<cB.a<c<bC.b<a<cD.c<a<b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.若質(zhì)點(diǎn)P的位移S(單位:m)關(guān)于運(yùn)動(dòng)時(shí)間t的函數(shù)關(guān)系式為:S=4ln(t+1)+t2(t>0),則其瞬時(shí)速度的最小值為(4$\sqrt{2}$-2)(m/s)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.求曲線$\left\{\begin{array}{l}{x=2{e}^{t}}\\{y={e}^{-t}}\end{array}\right.$在t=0相應(yīng)的點(diǎn)處的切線方程和法線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.指出下列各題中,命題p是q的什么條件:
(1)p:△ABC是等腰三角形,q:△ABC是等腰直角三角形;
(2)設(shè)a>b>0,命題p:c>d>0,q:ac>bd.

查看答案和解析>>

同步練習(xí)冊(cè)答案