(本小題滿分14分)
已知函數(shù)
(Ⅰ)若函數(shù)處取得極值,求實(shí)數(shù)a的值;
(Ⅱ)在(I)條件下,若直線與函數(shù)的圖象相切,求實(shí)數(shù)k的值;
(Ⅲ)記,求滿足條件的實(shí)數(shù)a的集合.

(1)1(2)e(3)a

解析試題分析:(1)根據(jù)題意,由于函數(shù)在x=1處取得極值,則可知有f’(1)=0,

(2)根據(jù)已知直線與函數(shù)的圖象相切,設(shè)出切點(diǎn)為(m,n)那么必有
過該點(diǎn)的切線方程與已知的直線相同,那么可知根據(jù)對(duì)應(yīng)相等得到,實(shí)數(shù)k的值為e.
(3)利用第一問中函數(shù)的極值即為最值1,那么可知
考點(diǎn):本試題考查了導(dǎo)數(shù)在研究函數(shù)中的運(yùn)用。
點(diǎn)評(píng):解決該試題的關(guān)鍵是對(duì)于導(dǎo)數(shù)的求解以及函數(shù)的極值的判定,然后結(jié)合其導(dǎo)數(shù)的幾何意義,求解相應(yīng)的切線方程,明確切點(diǎn)和切線的斜率兩個(gè)概念即可。同時(shí)對(duì)于含有參數(shù)的函數(shù)的研究,出現(xiàn)多解的情況要加以驗(yàn)證。屬于中檔題。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分) 若函數(shù)的圖象過兩點(diǎn),設(shè)函數(shù);
(1)求的定義域;
(2)求函數(shù)的值域,判斷g(x)奇偶性,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分10分)
已知函數(shù)
(1)判斷的奇偶性;
(2)若,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分14分)
已知函數(shù)…是自然對(duì)數(shù)的底數(shù))的最小值為
(Ⅰ)求實(shí)數(shù)的值;
(Ⅱ)已知,試解關(guān)于的不等式 ;
(Ⅲ)已知.若存在實(shí)數(shù),使得對(duì)任意的,都有,試求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分14分)
(1)已知函數(shù)
(2)已知函數(shù)分別由下表給出:


1
2
 
3
6

1
2

2
1
  
用分段函數(shù)表示,并畫出函數(shù)的圖象。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)已知命題P:函數(shù)R上的減函數(shù),命題Q:在 時(shí),不等式恒成立,若命題“”是真命題,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分13分)
設(shè)函數(shù),其中,且a≠0.
(Ⅰ)當(dāng)a=2時(shí),求函數(shù)在區(qū)間[1,e]上的最小值;
(Ⅱ)求函數(shù)的單調(diào)區(qū)間。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù),,(為自然對(duì)數(shù)的底數(shù)).
(Ⅰ)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)函數(shù)在區(qū)間上恒為正數(shù),求的最小值;
(Ⅲ)若對(duì)任意給定的,在上總存在兩個(gè)不同的,使得成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(滿分12分)
已知函數(shù).
(1)判斷并證明函數(shù)的單調(diào)性;
(2)若函數(shù)為奇函數(shù),求的值;
(3)在(2)的條件下,若對(duì)恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案