【題目】設(shè)函數(shù)

I,求函數(shù)的單調(diào)區(qū)間.

II若函數(shù)在區(qū)間上是減函數(shù),求實數(shù)的取值范圍.

III過坐標原點作曲線的切線,求切線的橫坐標.

【答案】1減區(qū)間為,增區(qū)間為.(231

【解析】試題分析:(1)求出,由可得函數(shù)的減區(qū)間,由可得函數(shù)的增區(qū)間;(2轉(zhuǎn)化成對任意恒成立求解,即對任意恒成立,求出的最小值即可;(3)設(shè)出切點,結(jié)合導數(shù)的幾何意義求出過切點的切線方程,利用切線過原點可求得切點坐標。

試題解析:I時,

∵當, , 為單調(diào)減函數(shù).

, 為單調(diào)增函數(shù).

的單調(diào)減區(qū)間為,單調(diào)增區(qū)間為

II 在區(qū)間上是減函數(shù),

對任意恒成立.

對任意恒成立.

,

易知上單調(diào)遞減,∴

III)設(shè)切點為

由題意得,

,

∴曲線在點切線方程為,

又切線過原點,

,

整理得

設(shè),

恒成立, 上單調(diào)遞增,

,

上只有一個零點,即,

∴切點的橫坐標為

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四棱錐P﹣ABCD中,底面ABCD為平行四邊形,AB=2,AD= ,∠DAB= ,PD⊥AD,PD⊥DC.
(Ⅰ)證明:BC⊥平面PBD;
(Ⅱ)若二面角P﹣BC﹣D為 ,求AP與平面PBC所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖在棱長均為2的正四棱錐P﹣ABCD中,點E為PC中點,則下列命題正確的是(

A.BE平行面PAD,且直線BE到面PAD距離為
B.BE平行面PAD,且直線BE到面PAD距離為
C.BE不平行面PAD,且BE與平面PAD所成角大于
D.BE不平行面PAD,且BE與面PAD所成角小于

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)
(1)判斷函數(shù)f(x)的奇偶性,并證明;
(2)利用函數(shù)單調(diào)性的定義證明:f(x)是其定義域上的增函數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某單位有車牌尾號為的汽車和尾號為的汽車,兩車分屬于兩個獨立業(yè)務(wù)部分.對一段時間內(nèi)兩輛汽車的用車記錄進行統(tǒng)計,在非限行日, 車日出車頻率, 車日出車頻率.該地區(qū)汽車限行規(guī)定如下:

車尾號

限行日

星期一

星期二

星期三

星期四

星期五

現(xiàn)將汽車日出車頻率理解為日出車概率,且, 兩車出車相互獨立.

I)求該單位在星期一恰好出車一臺的概率.

II)設(shè)表示該單位在星期一與星期二兩天的出車臺數(shù)之和,求的分布列及其數(shù)學期望

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,已知長方體ABCD﹣A1B1C1D1中,AB=BC=2,AA1=4,E是棱CC1上的點,且BE⊥B1C.
(1)求CE的長;
(2)求證:A1C⊥平面BED;
(3)求A1B與平面BDE夾角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)為常數(shù)).

(1)討論函數(shù)的單調(diào)區(qū)間;

(2)當時,設(shè)的兩個極值點,)恰為的零點,求的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】衡陽市為增強市民的環(huán)境保護意識,面向全市征召義務(wù)宣傳志愿者,現(xiàn)從符合條件的志愿者中隨機抽取100名后按年齡分組:第1,第2,第3,第4,第5,得到的頻率分布直方圖如圖所示.

1)若從第3,4,5組中用分層抽樣的方法抽取6名志愿者參加廣場的宣傳活動,則應(yīng)從第34,5組各抽取多少名志愿者?

2)在(1)的條件下,該市決定在第3,4組的志愿者中隨機抽取2名志愿者介紹宣傳經(jīng)驗,求第4組至少有一名志愿者被抽中的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知各項均為正數(shù)的等比數(shù)列{an}的首項a1=2,Sn為其前n項和,若5S1 , S3 , 3S2成等差數(shù)列.
(1)求數(shù)列{an}的通項公式;
(2)設(shè)bn=log2an , cn= ,記數(shù)列{cn}的前n項和為Tn . 若對于任意的n∈N* , Tn≤λ(n+4)恒成立,求實數(shù)λ的取值范圍.

查看答案和解析>>

同步練習冊答案