已知函數(shù)y=loga(x+4)-1(a>0,且a≠1)的圖象恒過定點A,若點A在直線mx+ny+3=0上,其中m>0,n>0,則的最小值為   
【答案】分析:由對數(shù)函數(shù)的性質(zhì)可得函數(shù)y=loga(x+4)-1恒過定點A(-3,-1)及點A在直線mx+ny+3=0上可得,m>0,n>0,而=,利用基本不等式可求最小值
解答:解:由對數(shù)函數(shù)的性質(zhì)可得函數(shù)y=loga(x+4)-1恒過定點A(-3,-1)
∵點A在直線mx+ny+3=0上
∴-3m-n+3=0即,m>0,n>0
===4
故答案為:4
點評:本題主要考查了利用基本不等式求解最值,解題的關(guān)鍵是要對所求的式子進行配湊成符合基本不等式的條件即是進行了1的代換.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)y=loga(ax2-x)在區(qū)間[2,4]上是增函數(shù),則實數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

7、已知函數(shù)y=loga(x+b)的圖象如圖所示,則a、b的取值范圍分別是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)y=loga(ax2-x)在區(qū)間[2,4]上是增函數(shù),則實數(shù)a的取值范圍是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)y=loga(x+4)-1(a>0,且a≠1)的圖象恒過定點A,若點A在直線mx+ny+3=0上,其中m>0,n>0,則
1
m
+
3
n
的最小值為
4
4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)y=loga(3a-1)的值恒為正數(shù),則a的取值范圍是
1
3
,
2
3
)∪(1,+∞)
1
3
,
2
3
)∪(1,+∞)

查看答案和解析>>

同步練習冊答案