(本題滿分14分)設(shè)函數(shù)的定義域為
,記函數(shù)
的最大值為
.
(1)求的解析式;(2)已知
試求實數(shù)
的取值范圍.
(1) (2)
【解析】
試題分析:(1) ( i )當(dāng)時,
在
單調(diào)遞增,
-----------1分
(ii)時,
的對稱軸為
,則
在
單調(diào)遞增,
--------------2分
(iii)當(dāng)時,
的對稱軸為
,
若 即
時
在
單調(diào)遞減,
------------------3分
若 即
時
--------------------4分
若 即
時
在
單調(diào)遞增,
-----------------------5分
--------------------6分
(2) 當(dāng)時
,
設(shè),
------9分
在區(qū)間
單調(diào)遞增 -------------10分
在
上不遞減,
等價于
或
-----------12分
解得或
-------------------13分
的取值范圍是
----------14分
考點:二次函數(shù)求最值及解不等式
點評:本題求最值時需分情況討論,對學(xué)生來說是一個難點
科目:高中數(shù)學(xué) 來源: 題型:
(本題滿分14分)
設(shè)函數(shù),
。
(1)若,過兩點
和
的中點作
軸的垂線交曲線
于點
,求證:曲線
在點
處的切線
過點
;
(2)若,當(dāng)
時
恒成立,求實數(shù)
的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(本題滿分14分)設(shè)函數(shù)(1)求函數(shù)
的單調(diào)區(qū)間;(2)求
在[—1,2]上的最小值; (3)當(dāng)
時,用數(shù)學(xué)歸納法證明:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011——2012學(xué)年湖北省洪湖二中高三八月份月考試卷理科數(shù)學(xué) 題型:解答題
(本題滿分14分)設(shè)橢圓的左、右焦點分別為F1與
F2,直線過橢圓的一個焦點F2且與橢圓交于P、Q兩點,若
的周長為
。
(1)求橢圓C的方程;
(2)設(shè)橢圓C經(jīng)過伸縮變換變成曲線
,直線
與曲線
相切
且與橢圓C交于不同的兩點A、B,若,求
面積的取值范圍。(O為坐標(biāo)原點)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年浙江省杭州市高三寒假作業(yè)數(shù)學(xué)卷三 題型:解答題
(本題滿分14分)設(shè)M是由滿足下列條件的函數(shù)構(gòu)成的集合:“①方
有實數(shù)根;②函數(shù)
的導(dǎo)數(shù)
滿足
”
(I)證明:函數(shù)是集合M中的元素;
(II)證明:函數(shù)具有下面的性質(zhì):對于任意
,都存在
,使得等式
成立。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年廣東省揭陽市高三調(diào)研檢測數(shù)學(xué)理卷 題型:解答題
本題滿分14分)
設(shè)函數(shù).
(1)若,求函數(shù)
的極值;
(2)若,試確定
的單調(diào)性;
(3)記,且
在
上的最大值為M,證明:
.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com