已知0<a<b<c<1,且a、b、c成等比數(shù)列,n為大于1的整數(shù),則logan,logbn,logcn成( 。
分析:對(duì)各項(xiàng)取倒數(shù),利用對(duì)數(shù)的運(yùn)算法則,結(jié)合等比數(shù)列的性質(zhì),等差數(shù)列的定義,即可得到結(jié)論.
解答:解:∵0<a<b<c<1,且a、b、c成等比數(shù)列,
∴b2=ac,∴
1
logan
+
1
logcn
=logna+lognc=logn(ac)=lognb2=2lognb=
2
logbn
,
∴l(xiāng)ogan,logbn,logcn的各項(xiàng)倒數(shù)成等差數(shù)列
故選C.
點(diǎn)評(píng):本題考查等差數(shù)列與等比數(shù)列的綜合,考查等差數(shù)列的確定,考查學(xué)生的計(jì)算能力,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)的定義域?yàn)椋?,+∞),若y=
f(x)
x
在(0,+∞)上為增函數(shù),則稱f(x)為“一階比增函數(shù)”;若y=
f(x)
x2
在(0,+∞)上為增函數(shù),則稱f(x)為“二階比增函數(shù)”.我們把所有“一階比增函數(shù)”組成的集合記為Ω1,所有“二階比增函數(shù)”組成的集合記為Ω2
(Ⅰ)已知函數(shù)f(x)=x3-2hx2-hx,若f(x)∈Ω1,且f(x)∉Ω2,求實(shí)數(shù)h的取值范圍;
(Ⅱ)已知0<a<b<c,f(x)∈Ω1且f(x)的部分函數(shù)值由下表給出,
x a b c a+b+c
f(x) d d t 4
求證:d(2d+t-4)>0;
(Ⅲ)定義集合Φ={f(x)|f(x)∈Ω2,且存在常數(shù)k,使得任取x∈(0,+∞),f(x)<k},請(qǐng)問:是否存在常數(shù)M,使得?f(x)∈Φ,?x∈(0,+∞),有f(x)<M成立?若存在,求出M的最小值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)=(
1
2
)x-log2x
,已知0<a<b<c,且f(a)•f(b)•f(c)<0,若x0是函數(shù)f(x)的一個(gè)零點(diǎn),那么下列不等式中不可能成立的是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知0<a<b<c<1,且a、b、c成等比數(shù)列,n為大于1的整數(shù),則logan,logbn,logcn成( 。
A.等差數(shù)列B.等比數(shù)列
C.各項(xiàng)倒數(shù)成等差數(shù)列D.各項(xiàng)倒數(shù)成等比數(shù)列

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年江蘇省揚(yáng)州中學(xué)高三(下)開學(xué)檢測(cè)數(shù)學(xué)試卷(解析版) 題型:解答題

已知函數(shù)f(x)的定義域?yàn)椋?,+∞),若y=在(0,+∞)上為增函數(shù),則稱f(x)為“一階比增函數(shù)”;若y=在(0,+∞)上為增函數(shù),則稱f(x)為“二階比增函數(shù)”.我們把所有“一階比增函數(shù)”組成的集合記為Ω1,所有“二階比增函數(shù)”組成的集合記為Ω2
(Ⅰ)已知函數(shù)f(x)=x3-2hx2-hx,若f(x)∈Ω1,且f(x)∉Ω2,求實(shí)數(shù)h的取值范圍;
(Ⅱ)已知0<a<b<c,f(x)∈Ω1且f(x)的部分函數(shù)值由下表給出,
xabca+b+c
f(x)ddt4
求證:d(2d+t-4)>0;
(Ⅲ)定義集合Φ={f(x)|f(x)∈Ω2,且存在常數(shù)k,使得任取x∈(0,+∞),f(x)<k},請(qǐng)問:是否存在常數(shù)M,使得?f(x)∈Φ,?x∈(0,+∞),有f(x)<M成立?若存在,求出M的最小值;若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案