3.已知cos($\frac{π}{12}$-θ)=$\frac{1}{3}$,則sin(2θ+$\frac{π}{3}$)=$-\frac{7}{9}$.

分析 由已知求得cos($\frac{π}{6}-2θ$)的值,再由誘導(dǎo)公式得答案.

解答 解:∵cos($\frac{π}{12}$-θ)=$\frac{1}{3}$,
∴$cos(\frac{π}{6}-2θ)=2co{s}^{2}(\frac{π}{12}-θ)-1=2×\frac{1}{9}-1=-\frac{7}{9}$,
∴sin(2θ+$\frac{π}{3}$)=sin[$\frac{π}{2}$-($\frac{π}{6}-2θ$)]=cos($\frac{π}{6}-2θ$)=$-\frac{7}{9}$.
故答案為:-$\frac{7}{9}$.

點評 本題考查三角函數(shù)的化簡求值,考查倍角公式及誘導(dǎo)公式的應(yīng)用,是基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

13.如圖,函數(shù)y=2$\sqrt{3}$cos(ωx+φ)(ω>0,0≤φ≤$\frac{π}{2}$)的圖象與y軸交于點(0,$\sqrt{6}$),周期是π.
(1)求函數(shù)解析式,并寫出函數(shù)圖象的對稱軸方程和對稱中心;
(2)已知點A($\frac{π}{2}$,0),點P是該函數(shù)圖象上一點,點Q(x0,y0)是PA的中點,當y0=$\frac{\sqrt{6}}{2}$,x0∈[$\frac{π}{2}$,π]時,求x0的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.△ABC中,c=$\sqrt{3}$,b=1,∠B=30°,則△ABC的面積等于( 。
A.$\frac{\sqrt{3}}{2}$B.$\frac{\sqrt{3}}{4}$C.$\frac{\sqrt{3}}{2}$或$\sqrt{3}$D.$\frac{\sqrt{3}}{2}$或$\frac{\sqrt{3}}{4}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.若對任意實數(shù)x∈R,不等式$x_{\;}^2+m{x_{\;}}+2m-3≥0$恒成立,則實數(shù)m的取值范圍是( 。
A.[2,6]B.[-6,-2]C.(2,6)D.(-6,-2)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.要得到函數(shù)$y=sin(\frac{π}{4}-3x)$的圖象,只需要將函數(shù)y=sin3x的圖象( 。﹎.
A.向右平移$\frac{π}{4}$個單位B.向左平移$\frac{π}{4}$個單位
C.向右平移$\frac{π}{12}$個單位D.向左平移$\frac{π}{12}$個單位

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.為了得到函數(shù)f(x)=sin(3x+$\frac{π}{4}$)的圖象,只需將函數(shù)g(x)=sin3x的圖象( 。
A.向右平移$\frac{π}{4}$個單位B.向左平移$\frac{π}{4}$個單位
C.向右平移$\frac{π}{12}$個單位D.向左平移$\frac{π}{12}$個單位

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.已知平面向量$\overrightarrow{a}$=(1,2),$\overrightarrow$=(3,1),則向量$\overrightarrow{a}$與$\overrightarrow$的夾角為45°.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.已知函數(shù)f(x)=x(a-e-x),曲線y=f(x)上存在不同的兩點,使得曲線在這兩點處的切線都與y軸垂直,則實數(shù)a的取值范圍是( 。
A.(-e2,+∞)B.(-e2,0)C.(-e-2,+∞)D.(-e-2,0)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.已知數(shù)列{an}的前n項和為Sn,對一切正整數(shù)n,點Pn(n,Sn)都在函數(shù)f(x)=x2+2x的圖象上,且過點Pn(n,Sn)的切線的斜率為kn
(I)求數(shù)列{an}的通項公式;
(Ⅱ)若bn=$\frac{1}{{a}_{n}•({k}_{n}+1)}$,求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

同步練習冊答案