n∈N*n≥2時,1+2+22+…+24n-1=5p+q,其中pq為非負(fù)整數(shù),且0≤q<5,則q 的值為

A.0                B.1               C.3                  D.與n有關(guān)

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

觀察下列式子:1+
1
22
3
2
,1+
1
22
+
1
32
5
3
,1+
1
22
+
1
32
+
1
42
7
4
,…
,則可以猜想的結(jié)論為:當(dāng)n∈N且n≥2時,恒有
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=
x
x+2
(x>0),觀察:
 f1(x)=f(x)=
x
x+2
,
 f2(x)=f(f1(x))=
x
3x+4

 f3(x)=f(f2(x))=
x
7x+8
,
 f4(x)=f(f3(x))=
x
15x+16
,

根據(jù)以上事實,由歸納推理可得:
當(dāng)n∈N*且n≥2時,fn(x)=f(fn-1(x))=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=ln(x+1).
(1)若g(x)=
1
4
x2-x+f(x)
,求g(x)在[0,2]上的最大值與最小值;
(2)當(dāng)x>0時,求證
1
1+x
<f(
1
x
)<
1
x
;
(3)當(dāng)n∈N+且n≥2時,求證:
1
2
+
1
3
+
1
4
+…+
1
n+1
<f(n)<1+
1
2
+
1
3
+…+
1
n

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=ln
x+1
2
+
1-x
a(x+1)
(a>0)

(Ⅰ)若函數(shù)f(x)在[1,+∞)上為增函數(shù),求實數(shù)a的取值范圍;
(Ⅱ)求證:當(dāng)n∈N*且n≥2時,
1
2
+
1
3
+
1
4
+…+
1
n
<ln n

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=
x
x+2
(x>0)
,觀察:f1(x)=f(x)=
x
x+2
,f2(x)=f(f1(x))=
x
3x+4
,f3(x)=f(f2(x))=
x
7x+8
,f4(x)=f(f3(x))=
x
15x+16
…根據(jù)以上事實,由歸納推理可得當(dāng)n∈N*且n≥2時,fn(x)=f(fn-1(x))=(  )

查看答案和解析>>

同步練習(xí)冊答案