【題目】設(shè)x,y滿足約束條件 ,若目標(biāo)函數(shù)2z=2x+ny(n>0),z的最大值為2,則y=tan(nx+ )的圖象向右平移 后的表達(dá)式為(
A.y=tan(2x+
B.y=tan(x﹣
C.y=tan(2x﹣
D.y=tan2x

【答案】C
【解析】解:作出x,y滿足約束條件 下的可行域,目標(biāo)函數(shù)2z=2x+ny(n>0)可化為:y= + ,基準(zhǔn)線y= , 由線性規(guī)劃知識(shí),可得當(dāng)直線z=x+ 過(guò)點(diǎn)B(1,1)時(shí),z取得最大值,即1+ =2,解得n=2;
則y=tan(nx+ )的圖象向右平移 個(gè)單位后得到的解析式為y=tan[2(x﹣ )+ ]=tan(2x﹣ ).

故選:C.
畫(huà)出約束條件的可行域,利用z的最大值求出n,利用三角函數(shù)的圖象變換化簡(jiǎn)求解即可.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)為拋物線 的焦點(diǎn),點(diǎn)為拋物線上一定點(diǎn)。

1直線過(guò)點(diǎn)交拋物線、兩點(diǎn),若,求直線的方程;

(2)過(guò)點(diǎn)作兩條傾斜角互補(bǔ)的直線分別交拋物線于異于點(diǎn)的兩點(diǎn),試證明直線的斜率為定值,并求出該定值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線與圓O: 且與橢圓C: 相交于A,B兩點(diǎn)

(1)若直線恰好經(jīng)過(guò)橢圓的左頂點(diǎn),求弦長(zhǎng)AB;

(2)設(shè)直線OA,OB的斜率分別為k1,k2,判斷k1·k2是否為定值,并說(shuō)明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(14分)關(guān)于x的不等式ax2+(a﹣2)x﹣2≥0(a∈R)

(1)已知不等式的解集為(﹣∞,﹣1]∪[2,+∞),求a的值;

(2)解關(guān)于x的不等式ax2+(a﹣2)x﹣2≥0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,是平面,,是直線,給出下列命題:

,,則

,,,則;

如果,,是異面直線,則相交;

,且,,則,且

其中正確確命題的序號(hào)是_____(把正確命題的序號(hào)都填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知三棱錐S﹣ABC的各頂點(diǎn)都在一個(gè)半徑為r的球面上,且SA=SB=SC=1,AB=BC=AC=,則球的表面積為(  )

A. 12π B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)數(shù)列的前項(xiàng)和為,且對(duì)任意正整數(shù),滿足.

(1)求數(shù)列的通項(xiàng)公式;

(2)若,數(shù)列的前項(xiàng)和為,是否存在正整數(shù),使? 若存在,求出符合條件的所有的值構(gòu)成的集合;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓點(diǎn), 是圓上任意一點(diǎn),線段的垂直平分線和半徑相交于點(diǎn)。

(Ⅰ)當(dāng)點(diǎn)在圓上運(yùn)動(dòng)時(shí),求點(diǎn)的軌跡方程;

(Ⅱ)直線與點(diǎn)的軌跡交于不同兩點(diǎn),且(其中 O 為坐標(biāo)

原點(diǎn)),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列的前項(xiàng)和為,其中為常數(shù).

1)證明: ;

2)是否存在,使得為等差數(shù)列?并說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案