已知數(shù)列{an}的通項公式為an=|n-13|,那么滿足ak+ak+1+…+ak+19=102的正整數(shù)k=______.
∵an=|n-13|,∴an=
13-n    n≤13
n-13    n>13

∴當n≤13時,{an}的前n項和為Sn=
25n-n2
2

當n>13時,{an}的前n項和為Sn=
1
2
(n2-25n+312)

滿足ak+ak+1+…+ak+19=102,即ak+ak+1+…+ak+19=Sk+19-Sk-1=102,k是正整數(shù)
而Sk+19=
1
2
[(k+19)2-25(k+19)+312]
=
1
2
(k2+13k+198)
①當k-1≤13時,Sk-1=-
1
2
k2+k-13,
所以Sk+19-Sk-1=
1
2
(k2+13k+198)-(-
1
2
k2+
27
2
k-13)=102,解之得k=2或k=5
②當k-1>13時,Sk-1=
1
2
[(k-1)2-25(k-1)+312]
=
1
2
(k2-27k+338)
所以Sk+19-Sk-1=
1
2
(k2+13k+198)-
1
2
(k2-27k+338)=102,解之得k不是整數(shù),舍去
綜上所述,滿足條件的k=2或5
故答案為:2或5
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}的通項為an=2n-1,Sn為數(shù)列{an}的前n項和,令bn=
1
Sn+n
,則數(shù)列{bn}的前n項和的取值范圍為( 。
A、[
1
2
,1)
B、(
1
2
,1)
C、[
1
2
,
3
4
)
D、[
2
3
,1)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}的通項公式是an=
an
bn+1
,其中a、b均為正常數(shù),那么數(shù)列{an}的單調(diào)性為(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2003•東城區(qū)二模)已知數(shù)列{an}的通項公式是 an=
na
(n+1)b
,其中a、b均為正常數(shù),那么 an與 an+1的大小關系是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}的通項公式為an=2n-5,則|a1|+|a2|+…+|a10|=( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}的通項公式為an=
1
n+1
+
n
求它的前n項的和.

查看答案和解析>>

同步練習冊答案