分析 (1)用單調(diào)性定義證明,先任取兩個變量,且界定大小,再作差變形,通過分析,與零比較,要注意變形要到位;
(2)先求得反函數(shù)f-1(x)=log2(2x-1)(x>0),構(gòu)造函數(shù),利用復(fù)合函數(shù)的單調(diào)性求得函數(shù)的值域;
(3)原不等式轉(zhuǎn)化為2x+t+1>22x,x∈[1,2]恒成立,解得即可.
解答 解:(1)任取x1<x2,則f(x1)-f(x2)=log2(2x1+1)-log2(2x2+1)=log2$\frac{{2}^{{x}_{1}}+1}{{2}^{{x}_{2}}+1}$,
∵x1<x2,∴0<2x1+1<2x2+1,
∴0<$\frac{{2}^{{x}_{1}}+1}{{2}^{{x}_{2}}+1}$<1,log2$\frac{{2}^{{x}_{1}}+1}{{2}^{{x}_{2}}+1}$<0
∴f(x1)<f(x2),
即函數(shù)f(x)在(-∞,+∞)內(nèi)單調(diào)遞增
(2)∵f-1(x)=log2(2x-1)(x>0),
∴m=f-1(x)-f(x)=log2(2x-1)-log2(2x+1)=log2$\frac{{2}^{x}-1}{{2}^{x}+1}$=log2(1-$\frac{2}{{2}^{x}+1}$)
當(dāng)1≤x≤2時,$\frac{2}{5}$≤$\frac{2}{{2}^{x}+1}$≤$\frac{2}{3}$,
∴$\frac{1}{3}$≤1-$\frac{2}{{2}^{x}+1}$≤$\frac{3}{5}$
∴m的取值范圍是[log2$\frac{1}{3}$,log2$\frac{3}{5}$].
(3)∵f(x+t)>2x對于x∈[1,2]恒成立,
∴l(xiāng)og2(2x+t+1)>2x=log222x,
∴2x+t+1>22x,x∈[1,2]恒成立
∴22+t+1>24,
解得t>log2$\frac{15}{4}$.
故t的取值范圍為(log2$\frac{15}{4}$,+∞).
點評 本題主要考查函數(shù)與方程的綜合運用,主要涉及了用單調(diào)性的定義證明函數(shù)的單調(diào)性以及構(gòu)造函數(shù)研究函數(shù)的性質(zhì)等問題,還考查了轉(zhuǎn)化思想和構(gòu)造轉(zhuǎn)化函數(shù)的能力.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (1,2] | B. | [0,1)∪(2,+∞) | C. | [0,1] | D. | [0,2] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 最大值10 | B. | 最小值-5 | C. | 最小值-4 | D. | 最大值5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | a>b>c | B. | c>a>b | C. | b>a>c | D. | b>c>a |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com