A. | $\frac{π}{2}$ | B. | $\frac{2π}{3}$ | C. | π | D. | 2π |
分析 化f(x)為正弦型函數(shù),令f(x)=1求出x的值,利用曲線y=f(x)與直線y=1的交點中相鄰交點距離的最小值為$\frac{π}{4}$,得出ω|x2-x1|=$\frac{3π}{4}$-$\frac{π}{4}$,從而求出ω和f(x)的最小正周期T.
解答 解:函數(shù)f(x)=sinωx+cosωx=$\sqrt{2}$sin(ωx+$\frac{π}{4}$),
令f(x)=1,得sin(ωx+$\frac{π}{4}$)=$\frac{\sqrt{2}}{2}$,
∴ωx+$\frac{π}{4}$=$\frac{π}{4}$+2kπ,k∈Z,
或ωx+$\frac{π}{4}$=$\frac{3π}{4}$+2kπ,k∈Z;
又在曲線y=f(x)與直線y=1的交點中,相鄰交點距離的最小值為$\frac{π}{4}$,
∴ω|x2-x1|=$\frac{3π}{4}$-$\frac{π}{4}$,
即$\frac{π}{4}$ω=$\frac{π}{2}$,
解得ω=2,
∴f(x)的最小正周期為T=$\frac{2π}{ω}$=π.
故選:C.
點評 本題考查了正弦型函數(shù)的圖象與性質(zhì)的應(yīng)用問題,是基礎(chǔ)題目.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{8}{3}$ | B. | $\frac{16}{3}$ | C. | 8 | D. | $\frac{128}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | 3 | C. | 4 | D. | 6 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -$\frac{7}{5}$ | B. | -$\frac{1}{5}$ | C. | $\frac{1}{5}$ | D. | $\frac{7}{5}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com