已知橢圓C:(),其離心率為,兩準線之間的距離為。(1)求之值;(2)設(shè)點A坐標為(6, 0),B為橢圓C上的動點,以A為直角頂點,作等腰直角△ABP(字母A,B,P按順時針方向排列),求P點的軌跡方程。
(1)a=5,b=3(2)
(1)設(shè)c為橢圓的焦半徑,則
。
于是有a=5,b=3。
(2) 解法一:設(shè)B點坐標為,P點坐標為。于是有
因為,所以有
。 (A1 )
又因為ABP為等腰直角三角形,所以有 AB=AP,即
。 (A2 )
由(A1)推出,代入(A2),得
從而有 ,即(不合題意,舍去)或。
代入橢圓方程,即得動點P的軌跡方程
解法二: 設(shè),,則以A為圓心,r為半徑的圓的參數(shù)方程為
。
設(shè)AB與x軸正方向夾角為,B點的參數(shù)表示為
,
P點的參數(shù)表示為
.
從上面兩式,得到
。
又由于B點在橢圓上,可得
。
此即為P點的軌跡方程。
科目:高中數(shù)學 來源:2014屆甘肅天水一中高二下學期期末考試理科數(shù)學試卷(解析版) 題型:解答題
已知橢圓C的方程為,其離心率為,經(jīng)過橢圓焦點且垂直于長軸的弦長為3.
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)直線l:與橢圓C交于A、B兩點,P為橢圓上的點,O為坐標原點,且滿足,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源:2013年山東省高考數(shù)學預測試卷(08)(解析版) 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源:2012年東北三省三校高考數(shù)學二模試卷(理科)(解析版) 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com