【題目】設函數(shù),其中

(1)求的單調區(qū)間

(2)若存在極值點,,其中求證;

(3)設,函數(shù),求證在區(qū)間上的最大值不小于

【答案】(1)當時,的單調遞增區(qū)間為,,單調遞減區(qū)間為,單調遞增區(qū)間為,;(2)證明見解析;(3)證明見解析.

【解析】

試題分析:(1)求出的導數(shù),討論時,,上遞增;當時,由導數(shù)大

,可得增區(qū)間;導數(shù)小于,可得減區(qū)間;(2),可得,分別計算,,化簡整理即可得證;(3)要證在區(qū)間上的最大值不小于,即證在上存在,,使得,運用單調性和極值,化簡整理即可得證.

試題解析:(1)解:由,可得

下面分兩種情況討論:

時,有恒成立,所以的單調遞增區(qū)間為;

時,令,解得,或

變化時,,的變化情況如下表:

0

0

極大值

極小值

所以的單調遞減區(qū)間為,單調遞增區(qū)間為

(2)證明:因為存在極值點,所以由(1)知,且,

由題意,得,即,

進而

,

即為,即有,即為

(3)要證在區(qū)間上的最大值不小于,即證在上存在,使得

,

,

,,

由于,成立.

綜上可得,在區(qū)間上的最大值不小于

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)函數(shù)在點處的切線為

1)求函數(shù)的值,并求出上的單調區(qū)間;

2)若,且,求證:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為選拔參加“全市高中數(shù)學競賽”的選手,某中學舉行了一次“數(shù)學競賽”活動.為了了解本次競賽學生的成績情況,從中抽取了部分學生的分數(shù)(得分取正整數(shù),滿分為分)作為樣本(樣本容量為)進行統(tǒng)計.按照的分組作出頻率分布直方圖,并作出樣本分數(shù)的莖葉圖(圖中僅列出了得分在的數(shù)據(jù)).

(1)求樣本容和頻率分布直方圖中的值并求出抽取學生的平均分;

(2)在選取的樣本中,從競賽成績在分以上(含)的學生中隨機抽取名學生參加“全市中數(shù)學競賽”求所抽取的名學生中至少有一人得分在內的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在四棱錐PABCD中,底面ABCD是正方形側棱PD垂直于底面ABCD,PDDC,點E是PC的中點

(Ⅰ)求證:PA∥平面EBD;

)求二面角EBDP的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某科研小組研究發(fā)現(xiàn):一棵水蜜桃樹的產量(單位:百千克)與肥料費用(單位:百元)滿足如下關系:,且投入的肥料費用不超過5百元.此外,還需要投入其他成本(如施肥的人工費等)百元.已知這種水蜜桃的市場售價為16元/千克(即16百元/百千克),且市場需求始終供不應求.記該棵水蜜桃樹獲得的利潤為(單位:百元).

(1)求利潤函數(shù)的函數(shù)關系式,并寫出定義域;

(2)當投入的肥料費用為多少時,該水蜜桃樹獲得的利潤最大?最大利潤是多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

(1)求函數(shù)在點處的切線方程;

(2)求函數(shù)的單調區(qū)間;

(3)若存在,使得是自然對數(shù)的底數(shù)),求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】先后2次拋擲一枚骰子,將得到的點數(shù)分別記為

)求滿足的概率;

)設三條線段的長分別為5,求這三條線段能圍成等腰三角形(含等邊三角形)的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系中,曲線的參數(shù)方程為為參數(shù)),以坐標原點為極點, 軸的正半軸為極軸建立極坐標系,直線的極坐標方程為,直線的極坐標方程為, 的交點為.

(1)判斷點與曲線的位置關系;

(2)點為曲線上的任意一點,求的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】《中國好聲音The Voice of China》是由浙江衛(wèi)視聯(lián)合星空傳媒旗下燦星制作強力打造的大型勵志專業(yè)音樂評論節(jié)目,于2012年7月13日正式在浙江衛(wèi)視播出.每期節(jié)目有四位導師參加.導師背對歌手,當每位參賽選手演唱完之前有導師為其轉身,則該選手可以選擇加入為其轉身的導師的團隊中接受指導訓練.已知某期《中國好聲音》中,6位選手演唱完后,四位導師為其轉身的情況如下表所示:

現(xiàn)從這6位選手中隨機抽取兩人考查他們演唱完后導師的轉身情況.

1求選出的兩人導師為其轉身的人數(shù)和為4的概率;

2記選出的2人導師為其轉身的人數(shù)之和為,求的分布列及數(shù)學期望.

查看答案和解析>>

同步練習冊答案