已知雙曲線x2-
y2
a
=1(a>0)
的一條漸近線與直線x-2y+3=0垂直,則該雙曲線的離心率是( 。
A.
3
B.
5
C.
5
2
D.2
3
雙曲線x2-
y2
a
=1(a>0)
的漸近線方程為y=±
a
x

∵雙曲線x2-
y2
a
=1(a>0)
的一條漸近線與直線x-2y+3=0垂直
a
=2
,∴a=4
∴雙曲線的方程為x2-
y2
4
=1

∴雙曲線的離心率是
1+4
1
=
5

故選B.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

3、已知雙曲線x2-y2+1=0與拋物線y2=(k-1)x至多有兩個(gè)公共點(diǎn),則k的取值范圍是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線x2-y2=2的左、右焦點(diǎn)分別為F1,F(xiàn)2,過點(diǎn)F2的動直線與雙曲線相交于A,B兩點(diǎn).若動點(diǎn)M滿足
F1M
=
F1A
+
F1B
+
F1O
(其中O為坐標(biāo)原點(diǎn)),求點(diǎn)M的軌跡方程;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線x2-y2=a2(a>0)的左、右頂點(diǎn)分別為A、B,雙曲線在第一象限的圖象上有一點(diǎn)P,∠PAB=α,∠PBA=β,∠APB=γ,則( 。
A、tanα+tanβ+tanγ=0B、tanα+tanβ-tanγ=0C、tanα+tanβ+2tanγ=0D、tanα+tanβ-2tanγ=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線x2-y2=λ與橢圓
x2
16
+
y2
64
=1
有共同的焦點(diǎn),則λ的值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•臺州一模)已知雙曲線x2-y2=4a(a∈R,a≠0)的右焦點(diǎn)是橢圓
x2
16
+
y2
9
=1
的一個(gè)頂點(diǎn),則a=
2
2

查看答案和解析>>

同步練習(xí)冊答案