函數(shù)f(x)=sin(ωx+φ)(其中|φ|<
π
2
)的圖象如圖所示,為了得到y(tǒng)=sinωx的圖象,只需把y=f(x)的圖象上所有點( 。
A、向左平移
π
6
個單位長度
B、向右平移
π
12
個單位長度
C、向左平移
π
12
個單位長度
D、向右平移
π
6
個單位長度
考點:函數(shù)y=Asin(ωx+φ)的圖象變換
專題:三角函數(shù)的求值,三角函數(shù)的圖像與性質(zhì)
分析:首先根據(jù)函數(shù)圖象求出函數(shù)的周期,進一步利用函數(shù)經(jīng)過的點的坐標求出函數(shù)的解析式,進一步利用函數(shù)的圖象變換求出結果.
解答: 解:根據(jù)函數(shù)的圖象
T
4
=
12
-
π
3
=
π
4
,
所以:T=π,
ω=
π
=2
,
當x=
π
3
時,函數(shù)f(
π
3
)=0,
即:f(
π
3
)=sin(2
π
3
+
φ)=0.
解得:φ=
π
3
,
所以:f(x)=sin(2x+
π
3
).
要得到y(tǒng)=sin2x的圖象只需將函數(shù)f(x)=sin(2x+
π
3
)向右平移
π
6
個單位,
即y=sin(2x-
π
3
+
π
3
)=sin2x.
故選:D.
點評:本題考查的知識要點:三角函數(shù)解析式的求法,函數(shù)圖象的平移變換問題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

如圖,四邊形ACDF為正方形,且平面ACDF⊥平面BCDE,平面ACDF⊥平面ABC,BC=2DE,DE∥BC,M為AB的中點.
(Ⅰ)證明:BC⊥AD;
(Ⅱ)證明EM∥平面ACDF.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}中,a1=1,an+1=2an+3n,則下列結論錯誤的是(  )
A、{
an
3n
-1
}成等比數(shù)列
B、{an-3n}成等比數(shù)列
C、{an+2n}成等比數(shù)列
D、{an-2n}成等比數(shù)列

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖是某市今年1月份前30天空氣質(zhì)量指數(shù)(AQI)的趨勢圖.

(1)根據(jù)該圖數(shù)據(jù)在答題卷中完成頻率分布表,并在圖4中補全這些數(shù)據(jù)的頻率分布直方圖;
分組頻數(shù) 頻率 
[20,40)  
[40,60)  
[60,80)  
[80,100)  
[100,120)  
[120,140)  
[140,160)  
[160,180)  
[180.200]  
 合計 30 1
(2)當空氣質(zhì)量指數(shù)(AQI)小于100時,表示空氣質(zhì)量優(yōu)良.某人隨機選擇當月(按30天計)某一天到達該市,根據(jù)以上信息,能否認為此人到達當天空氣質(zhì)量優(yōu)良的可能性超過60%?

(圖中縱坐標1/300即
1
300
,以此類推)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設二次函數(shù)f(x)=ax2+bx+c(a,b∈R)滿足條件:①當x∈R時,f(x)的最大值為0,且f(x-1)=f(3-x)成立;②二次函數(shù)f(x)的圖象與直線y=-2交于A、B兩點,且|AB|=4
(Ⅰ)求f(x)的解析式;
(Ⅱ)求最小的實數(shù)n(n<-1),使得存在實數(shù)t,只要當x∈[n,-1]時,就有f(x+t)≥2x成立.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設函數(shù)g(x)=(x+1)ln(x+1)-x,f(x)=a(x+1)2•ln(x+1)+bx,曲線y=f(x)在原點(0,0)處的切線方程為y=0,且經(jīng)過點(e-1,e2-e+1).
(1)求y=f(x)的表達式,并證明:當x≥0時,g(x)≥0;
(2)若當x≥0時,f(x)≥mx2恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=2sin(ωx-
π
6
)-
1
2
(ω>0)和g(x)=
1
2
cos(2x+φ)+1圖象的對稱軸完全相同,若x∈[0,
π
2
],則f(x)的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知m=cos(-4),n=sin(-4),則( 。
A、m>nB、m<n
C、m=nD、m與n的大小不確定

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知直線ax+y-1=0與直線x+ay-1=0互相垂直,則a=(  )
A、1或-1B、1C、-1D、0

查看答案和解析>>

同步練習冊答案