已知函數(shù)f(x)=x3+(4-a)x2-15x+a,a∈R.
(I)若點P(0,-2)在函數(shù)f(x)的圖象上,求a的值和函數(shù)f(x)的極小值;
(II)若函數(shù)f(x)在(-1,1)上是單調(diào)遞減函數(shù),求a的最大值.

解:(I)∵點P(0,-2)在函數(shù)f(x)的圖象上
∴a=-2
∴f(x)=x3+6x2-15x-2
∴f′(x)=3x2+12x-15=3(x-1)(x+5)
令f′(x)=0,解得x=-5或x=1
令f′(x)<0,解得-5<x<1,∴函數(shù)的單調(diào)減區(qū)間為(-5,1)
令f′(x)>0,解得x<-5或x>1,∴函數(shù)的單調(diào)增區(qū)間為(-∞,-5),(1,+∞)
∴x=1時,函數(shù)f(x)取到極小值為f(x)=1+6-15-2=-10
(II)f′(x)=3x2+2(4-a)x-15
要使函數(shù)f(x)在(-1,1)上是單調(diào)遞減函數(shù),則f′(x)≤0在(-1,1)上恒成立



∴-2≤a≤10
∴a的最大值為10.
分析:(I)根據(jù)點P(0,-2)在函數(shù)f(x)的圖象上,可得a=-2,從而f(x)=x3+6x2-15x-2,利用導數(shù)確定函數(shù)的單調(diào)區(qū)間,從而可得函數(shù)f(x)的極小值;
(II)先求導函數(shù)f′(x)=3x2+2(4-a)x-15要使函數(shù)f(x)在(-1,1)上是單調(diào)遞減函數(shù),則f′(x)≤0在(-1,1)上恒成立,從而可得不等式,解之即可得到a的最大值.
點評:本題以函數(shù)為載體,考查導數(shù)的運用,考查函數(shù)的極值,同時考查學生分析解決問題的能力,解題時,將函數(shù)f(x)在(-1,1)上是單調(diào)遞減函數(shù),轉(zhuǎn)化為f′(x)≤0在(-1,1)上恒成立是關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)已知函數(shù)f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分圖象如圖所示,則f(x)的解析式是( 。
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•深圳一模)已知函數(shù)f(x)=
1
3
x3+bx2+cx+d
,設曲線y=f(x)在與x軸交點處的切線為y=4x-12,f′(x)為f(x)的導函數(shù),且滿足f′(2-x)=f′(x).
(1)求f(x);
(2)設g(x)=x
f′(x)
 , m>0
,求函數(shù)g(x)在[0,m]上的最大值;
(3)設h(x)=lnf′(x),若對一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2011•上海模擬)已知函數(shù)f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當a=1,b=2時,求f(x)的最小值;
(2)若f(a)≥2m-1對任意0<a<b恒成立,求實數(shù)m的取值范圍;
(3)設k、c>0,當a=k2,b=(k+c)2時,記f(x)=f1(x);當a=(k+c)2,b=(k+2c)2時,記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數(shù)學 來源:上海模擬 題型:解答題

已知函數(shù)f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當a=1,b=2時,求f(x)的最小值;
(2)若f(a)≥2m-1對任意0<a<b恒成立,求實數(shù)m的取值范圍;
(3)設k、c>0,當a=k2,b=(k+c)2時,記f(x)=f1(x);當a=(k+c)2,b=(k+2c)2時,記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數(shù)學 來源:深圳一模 題型:解答題

已知函數(shù)f(x)=
1
3
x3+bx2+cx+d
,設曲線y=f(x)在與x軸交點處的切線為y=4x-12,f′(x)為f(x)的導函數(shù),且滿足f′(2-x)=f′(x).
(1)求f(x);
(2)設g(x)=x
f′(x)
 , m>0
,求函數(shù)g(x)在[0,m]上的最大值;
(3)設h(x)=lnf′(x),若對一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實數(shù)t的取值范圍.

查看答案和解析>>

同步練習冊答案