【題目】下列命題正確的是( )
A.命題“x∈R,使得x2﹣1<0”的否定是:x∈R,均有x2﹣1<0
B.命題“若x=3,則x2﹣2x﹣3=0”的否命題是:若x≠3,則x2﹣2x﹣3≠0
C.“ ”是“ ”的必要而不充分條件
D.命題“cosx=cosy,則x=y”的逆否命題是真命題
【答案】B
【解析】解:對(duì)于A,“x∈R,使得x2﹣1<0”的否定是:x∈R,均有x2﹣1≥0,命題A錯(cuò)誤;
對(duì)于B,“若x=3,則x2﹣2x﹣3=0”的否命題是:若x≠3,則x2﹣2x﹣3≠0,命題B正確;
對(duì)于C, 時(shí), ,充分性成立;
時(shí),α=kπ+ 或α=kπ+ ,k∈Z,必要性不成立;
是充分不必要條件,命題B錯(cuò)誤;
對(duì)于D,命題“cosx=cosy,則x=y”是假命題,
則它的逆否命題也是假命題,∴命題D錯(cuò)誤.
故選:B.
【考點(diǎn)精析】本題主要考查了四種命題的相關(guān)知識(shí)點(diǎn),需要掌握原命題:若P則q; 逆命題:若q則p;否命題:若┑P則┑q;逆否命題:若┑q則┑p才能正確解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在兩塊鋼板上打孔,用釘帽呈半球形、釘身為圓柱形的鉚釘(圖1)穿在一起,在沒有帽的一端錘打出一個(gè)帽,使得與釘帽的大小相等.鉚合的兩塊鋼板,成為某種鋼結(jié)構(gòu)的配件,其截面圖如圖2.(單位:mm,加工中不計(jì)損失).
(1)若釘身高度是釘帽高度的2倍,求鉚釘?shù)谋砻娣e.
(2)若每塊鋼板的厚度為12mm,求釘身的長(zhǎng)度(結(jié)果精確到1 mm).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),(其中A>0,ω>0,0<φ<)的圖象與x軸的交點(diǎn)中,相鄰兩個(gè)交點(diǎn)之間的距離為,且圖象上一個(gè)最低點(diǎn)為M(,-2).
(1)求f(x)的解析式;
(2)將函數(shù)f(x)的圖象向右平移個(gè)單位后,再將所得圖象上各點(diǎn)的橫坐標(biāo)縮小到原來的,縱坐標(biāo)不變,得到y=g(x)的圖象,求函數(shù)y=g(x)的解析式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了預(yù)防流感,某學(xué)校對(duì)教室用藥熏消毒法進(jìn)行消毒.已知藥物釋放過程中,室內(nèi)每立方米空氣中的含藥量(毫克)與時(shí)間(小時(shí))成正比;藥物釋放完畢后,與的函數(shù)關(guān)系式為(為常數(shù)),如圖所示.據(jù)圖中提供的信息,回答下列問題:
(1)寫出從藥物釋放開始,每立方米空氣中的含藥量(毫克)與時(shí)間(小時(shí))之間的函數(shù)關(guān)系式;
(2)據(jù)測(cè)定,當(dāng)空氣中每立方米的含藥量降低到毫克以下時(shí),學(xué)生方可進(jìn)教室。那么藥物釋放開始,至少需要經(jīng)過多少小時(shí)后,學(xué)生才能回到教室?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖是某公共汽車線路收支差額(票價(jià)總收人減去運(yùn)營(yíng)成本)與乘客量的函數(shù)圖象.目前這條線路虧損,為了扭虧,有關(guān)部門舉行提高票價(jià)的聽證會(huì).乘客代表認(rèn)為:公交公司應(yīng)節(jié)約能源,改善管理,降低運(yùn)營(yíng)成本,以此舉實(shí)現(xiàn)扭虧.公交公司認(rèn)為:運(yùn)營(yíng)成本難以下降,公司己盡力,提高票價(jià)才能扭虧.根據(jù)這兩種意見,可以把圖分別改畫成圖②和圖③,
(1)說明圖①中點(diǎn)和點(diǎn)以及射線的實(shí)際意義;
(2)你認(rèn)為圖②和圖③兩個(gè)圖象中,反映乘客意見的是_________,反映公交公司意見的是_________.
(3)如果公交公司采用適當(dāng)提高票價(jià)又減少成本的辦法實(shí)現(xiàn)扭虧為贏,請(qǐng)你在圖④中畫出符合這種辦法的大致函數(shù)關(guān)系圖象.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨著網(wǎng)絡(luò)的發(fā)展,人們可以在網(wǎng)絡(luò)上購(gòu)物、玩游戲、聊天、導(dǎo)航等,所以人們對(duì)上網(wǎng)流量的需求越來越大.某電信運(yùn)營(yíng)商推出一款新的“流量包”套餐.為了調(diào)查不同年齡的人是否愿意選擇此款“流量包”套餐,隨機(jī)抽取50個(gè)用戶,按年齡分組進(jìn)行訪談,統(tǒng)計(jì)結(jié)果如表.
組號(hào) | 年齡 | 訪談人數(shù) | 愿意使用 |
1 | [18,28) | 4 | 4 |
2 | [28,38) | 9 | 9 |
3 | [38,48) | 16 | 15 |
4 | [48,58) | 15 | 12 |
5 | [58,68) | 6 | 2 |
(Ⅰ)若在第2、3、4組愿意選擇此款“流量包”套餐的人中,用分層抽樣的方法抽取12人,則各組應(yīng)分別抽取多少人?
(Ⅱ)若從第5組的被調(diào)查者訪談人中隨機(jī)選取2人進(jìn)行追蹤調(diào)查,求2人中至少有1人愿意選擇此款“流量包”套餐的概率.
(Ⅲ)按以上統(tǒng)計(jì)數(shù)據(jù)填寫下面2×2列聯(lián)表,并判斷以48歲為分界點(diǎn),能否在犯錯(cuò)誤不超過1%的前提下認(rèn)為,是否愿意選擇此款“流量包”套餐與人的年齡有關(guān)?
年齡不低于48歲的人數(shù) | 年齡低于48歲的人數(shù) | 合計(jì) | |
愿意使用的人數(shù) | |||
不愿意使用的人數(shù) | |||
合計(jì) |
參考公式: ,其中:n=a+b+c+d.
P(k2≥k0) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐S—ABCD的底面為正方形,SD⊥底面ABCD,則下列結(jié)論
①AC⊥SB
②AB∥平面SCD
③SA與平面ABD所成的角等于SC與平面ABD所成的角
④AB與SC所成的角等于DC與SA所成的角.
⑤二面角的大小為
其中,正確結(jié)論的序號(hào)是________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知冪函數(shù),且在上單調(diào)遞增.
(1)求實(shí)數(shù)的值,并寫出相應(yīng)的函數(shù)的解析式;
(2)若在區(qū)間上不單調(diào),求實(shí)數(shù)的取值范圍;
(3)試判斷是否存在正數(shù),使函數(shù)在區(qū)間上的值域?yàn)?/span>,若存在,求出的值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}的前n項(xiàng)和Sn=1﹣nan(n∈N*)
(1)計(jì)算a1 , a2 , a3 , a4;
(2)猜想an的表達(dá)式,并用數(shù)學(xué)歸納法證明你的結(jié)論.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com