【題目】給出下列四個命題:
(1)函數(shù)為奇函數(shù)的充要條件是;
(2)函數(shù)的反函數(shù)是;
(3)若函數(shù)的值域是,則或;
(4)若函數(shù)是偶函數(shù),則函數(shù)的圖像關(guān)于直線對稱.
其中所有正確命題的序號是______.
【答案】(1)(2)(3)
【解析】
根據(jù)奇函數(shù)的定義得到(1)正確,根據(jù)反函數(shù)的求法以及定義域值域得到(2)正確,
由函數(shù)的值域是,得出其真數(shù)可以取到所有的正數(shù),由二次函數(shù)判別式大于等于0求解,可判斷出(3)正確,根據(jù)函數(shù)圖像平移可判斷(4)不正確.
解:(1)當(dāng)時,,,
當(dāng)函數(shù)為奇函數(shù)時,即,解得,所以是函數(shù)為奇函數(shù)的充要條件,所以(1)正確;
(2)由反函數(shù)的定義可知函數(shù)的反函數(shù)是,所以(2)正確;
(3)因為函數(shù)的值域是,所以能取遍的所有實(shí)數(shù),所以,解得或,所以(3)正確;
(4)函數(shù)是偶函數(shù),所以圖像關(guān)于軸對稱,函數(shù)的圖像是由向左平移一個單位得到的,所以函數(shù)的圖像關(guān)于直線對稱,故(4)不正確.
故答案為:(1)(2)(3)
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】半期考試后,班長小王統(tǒng)計了50名同學(xué)的數(shù)學(xué)成績,繪制頻率分布直方圖如圖所示.
根據(jù)頻率分布直方圖,估計這50名同學(xué)的數(shù)學(xué)平均成績;
用分層抽樣的方法從成績低于115的同學(xué)中抽取6名,再在抽取的這6名同學(xué)中任選2名,求這兩名同學(xué)數(shù)學(xué)成績均在中的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】將一鐵塊高溫融化后制成一張厚度忽略不計、面積為100dm2的矩形薄鐵皮(如圖),并沿虛線l1,l2裁剪成A,B,C三個矩形(B,C全等),用來制成一個柱體.現(xiàn)有兩種方案:
方案①:以為母線,將A作為圓柱的側(cè)面展開圖,并從B,C中各裁剪出一個圓形作為圓柱的兩個底面;
方案②:以為側(cè)棱,將A作為正四棱柱的側(cè)面展開圖,并從B,C中各裁剪出一個正方形(各邊分別與或垂直)作為正四棱柱的兩個底面.
(1)設(shè)B,C都是正方形,且其內(nèi)切圓恰為按方案①制成的圓柱的底面,求底面半徑;
(2)設(shè)的長為dm,則當(dāng)為多少時,能使按方案②制成的正四棱柱的體積最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在極坐標(biāo)系中,直線的極坐標(biāo)方程為,現(xiàn)以極點(diǎn)為原點(diǎn),極軸為軸的非負(fù)半軸建立平面直角坐標(biāo)系,曲線的參數(shù)方程為(為參數(shù)).
(1)求直線的直角坐標(biāo)方程和曲線的普通方程;
(2)若曲線為曲線關(guān)于直線的對稱曲線,點(diǎn)分別為曲線、曲線上的動點(diǎn),點(diǎn)坐標(biāo)為,求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若, 都是從0,1,2,3,4五個數(shù)中任取的一個數(shù),求上述函數(shù)有零點(diǎn)的概率;
(2)若, 都是從區(qū)間上任取的一個數(shù),求成立的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,幾何體是圓柱的一部分,它是由矩形ABCD(及其內(nèi)部)以AB邊所在直線為旋轉(zhuǎn)軸旋轉(zhuǎn)120°得到的,G是的中點(diǎn).
(1)設(shè)P是上的一點(diǎn),且AP⊥BE,求∠CBP的大;
(2)當(dāng)AB=3,AD=2時,求二面角E-AG-C的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,是的直徑,PA垂直于所在的平面,C是圓周上不同于A,B的一動點(diǎn).
(1)證明:是直角三角形;
(2)若,且當(dāng)直線與平面所成角的正切值為時,求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某賽季,甲、乙兩名籃球運(yùn)動員都參加了場比賽,他們所有比賽得分的情況如下:
甲:;
乙: .
(1)求甲、乙兩名運(yùn)動員得分的中位數(shù).
(2)分別求甲、乙兩名運(yùn)動員得分的平均數(shù)、方差,你認(rèn)為哪位運(yùn)動員的成績更穩(wěn)定?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com