【題目】已知,且(1-2x)n=a0+a1x+a2x2+a3x3+…+anxn.
(1)求n的值;(2)求a1+a2+a3+…+an的值.
【答案】(Ⅰ)15(Ⅱ)-2
【解析】試題分析:(1)由題: ,整理得: ,即, ,所以或(舍);
(2)由第(1)問(wèn)可知,所以,所以欲求的值,采用賦值法,首先令,則得到,所以,再令,得到,所以,由于,所以求出。
試題解析:(1) 由得
(-1)(-2)(-3)(-4)=56·
即(-5)(-6)=90
解得=15或=-4(舍去) 即=15
(2) 當(dāng)=15時(shí),由已知有
=a0+a1x+a2x2+a3x3+……+a15x15,
令x=1得:a0+a1+a2+a3+……+a15=-1,
令x=0得:a0=1,
∴a1+a2+a3+……+a15=-2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某鮮奶店每天以每瓶3元的價(jià)格從牧場(chǎng)購(gòu)進(jìn)若干瓶鮮牛奶,然后以每瓶7元的價(jià)格出售.如果當(dāng)天賣(mài)不完,剩下的鮮牛奶作垃圾處理.
(1)若鮮奶店一天購(gòu)進(jìn)30瓶鮮牛奶,求當(dāng)天的利潤(rùn)(單位:元)關(guān)于當(dāng)天需求量(單位:瓶,)的函數(shù)解析式;
(2)鮮奶店記錄了100天鮮牛奶的日需求量(單位:瓶),繪制出如下的柱形圖(例如:日需求量為25瓶時(shí),頻數(shù)為5);
(i)若該鮮奶店一天購(gòu)進(jìn)30瓶鮮牛奶,求這100天的日利潤(rùn)(單位:元)的平均數(shù);
(ii) 若該鮮奶店一天購(gòu)進(jìn)30瓶鮮牛奶,以100天記錄的各需求量的頻率作為各需求量發(fā)生的概率,求當(dāng)天的利潤(rùn)不少于100元的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】隨著國(guó)民生活水平的提高,利用長(zhǎng)假旅游的人越來(lái)越多,其公司統(tǒng)計(jì)了2012到2016年五年間本公司職工每年春節(jié)期間外出旅游的家庭數(shù),具體統(tǒng)計(jì)數(shù)據(jù)如表所示:
年份x | 2012 | 2013 | 2014 | 2015 | 2016 |
家庭數(shù)y | 6 | 10 | 16 | 22 | 26 |
(1)利用所給數(shù)據(jù),求出春節(jié)期間外出旅游的家庭數(shù)與年份之間的回歸直線(xiàn)方程y=bx+a,判斷它們之間是否是正相關(guān)還是負(fù)相關(guān);
(2)根據(jù)所求的直線(xiàn)方程估計(jì)該公司2019年春節(jié)期間外出的旅游的家庭數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】公差不為零的等差數(shù)列{an}中,a1 , a2 , a5成等比數(shù)列,且該數(shù)列的前10項(xiàng)和為100,數(shù)列{bn}的前n項(xiàng)和為Sn , 且滿(mǎn)足Sn= ,n∈N* .
(1)求數(shù)列{an},{bn}的通項(xiàng)公式;
(2)記得數(shù)列{ }的前n項(xiàng)和為T(mén)n , 求Tn的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知美國(guó)蘋(píng)果公司生產(chǎn)某款iPhone手機(jī)的年固定成本為40萬(wàn)美元,每生產(chǎn)1萬(wàn)只還需另投入16萬(wàn)美元.設(shè)蘋(píng)果公司一年內(nèi)共生產(chǎn)該款iPhone手機(jī)x萬(wàn)只并全部銷(xiāo)售完,每萬(wàn)只的銷(xiāo)售收入為R(x)萬(wàn)美元,且R(x)=
(1)寫(xiě)出年利潤(rùn)W(萬(wàn)美元)關(guān)于年產(chǎn)量x(萬(wàn)只)的函數(shù)解析式;
(2)當(dāng)年產(chǎn)量為多少萬(wàn)只時(shí),蘋(píng)果公司在該款iPhone手機(jī)的生產(chǎn)中所獲得的利潤(rùn)最大?并求出最大利潤(rùn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某城市實(shí)施了機(jī)動(dòng)車(chē)尾號(hào)限行,該市報(bào)社調(diào)查組為了解市區(qū)公眾對(duì)“車(chē)輛限行”的態(tài)度,隨機(jī)抽查了50人,將調(diào)查情況進(jìn)行整理后制成下表:
年齡(歲) | [15,25) | [25,35) | [35,45) | [45,55) | [55,65) | [65,75] |
頻數(shù) | 5 | 10 | 15 | 10 | 5 | 5 |
贊成人數(shù) | 4 | 6 | 9 | 6 | 3 | 4 |
(Ⅰ)請(qǐng)估計(jì)該市公眾對(duì)“車(chē)輛限行”的贊成率和被調(diào)查者的年齡平均值;
(Ⅱ)若從年齡在[15,25),[25,35)的被調(diào)查者中各隨機(jī)選取兩人進(jìn)行追蹤調(diào)查,記被選4人中不贊成“車(chē)輛限行”的人數(shù)為,求隨機(jī)變量的分布列和數(shù)學(xué)期望;
(Ⅲ)若在這50名被調(diào)查者中隨機(jī)發(fā)出20份的調(diào)查問(wèn)卷,記為所發(fā)到的20人中贊成“車(chē)輛限行”的人數(shù),求使概率取得最大值的整數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),
(1)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;
(2)若函數(shù)在區(qū)間上有1個(gè)零點(diǎn),求實(shí)數(shù)的取值范圍;
(3)是否存在正整數(shù),使得在上恒成立?若存在,求出k的最大值;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】過(guò)雙曲線(xiàn) =1(a>0,b>0)的右焦點(diǎn)F作一條直線(xiàn),當(dāng)直線(xiàn)斜率為l時(shí),直線(xiàn)與雙曲線(xiàn)左、右兩支各有一個(gè)交點(diǎn);當(dāng)直線(xiàn)斜率為3時(shí),直線(xiàn)與雙曲線(xiàn)右支有兩個(gè)不同的交點(diǎn),則雙曲線(xiàn)離心率的取值范圍為( )
A.(1, )
B.(1, )
C.( , )
D.( , )
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】數(shù)據(jù)顯示,某公司2018年上半年五個(gè)月的收入情況如下表所示:
月份 | 2 | 3 | 4 | 5 | 6 |
月收入(萬(wàn)元) | 1.4 | 2.56 | 5.31 | 11 | 21.3 |
根據(jù)上述數(shù)據(jù),在建立該公司2018年月收入(萬(wàn)元)與月份的函數(shù)模型時(shí),給出兩個(gè)函數(shù)模型與供選擇.
(1)你認(rèn)為哪個(gè)函數(shù)模型較好,并簡(jiǎn)單說(shuō)明理由;
(2)試用你認(rèn)為較好的函數(shù)模型,分析大約從第幾個(gè)月份開(kāi)始,該公司的月收入會(huì)超過(guò)100萬(wàn)元?(參考數(shù)據(jù),)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com