【題目】已知(12x)na0a1xa2x2a3x3anxn.

(1)n的值;(2)a1a2a3an的值

【答案】(15)-2

【解析】試題分析:(1)由題: ,整理得: ,即, ,所以(舍);

2)由第(1)問(wèn)可知,所以,所以欲求的值,采用賦值法,首先令,則得到,所以,再令,得到,所以,由于,所以求出。

試題解析:(1) 由

1)(2)(3)(4)=56·

即(5)(6)=90

解得15=-4(舍去) 即15

2) 當(dāng)15時(shí),由已知有

a0a1xa2x2a3x3……a15x15,

x1得:a0a1a2a3……a15=-1

x0得:a01,

∴a1a2a3……a15=-2

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某鮮奶店每天以每瓶3元的價(jià)格從牧場(chǎng)購(gòu)進(jìn)若干瓶鮮牛奶,然后以每瓶7元的價(jià)格出售.如果當(dāng)天賣(mài)不完,剩下的鮮牛奶作垃圾處理.

(1)若鮮奶店一天購(gòu)進(jìn)30瓶鮮牛奶,求當(dāng)天的利潤(rùn)(單位:元)關(guān)于當(dāng)天需求量(單位:瓶,)的函數(shù)解析式;

(2)鮮奶店記錄了100天鮮牛奶的日需求量(單位:瓶),繪制出如下的柱形圖(例如:日需求量為25瓶時(shí),頻數(shù)為5);

(i)若該鮮奶店一天購(gòu)進(jìn)30瓶鮮牛奶,求這100天的日利潤(rùn)(單位:元)的平均數(shù);

(ii) 若該鮮奶店一天購(gòu)進(jìn)30瓶鮮牛奶,以100天記錄的各需求量的頻率作為各需求量發(fā)生的概率,求當(dāng)天的利潤(rùn)不少于100元的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】隨著國(guó)民生活水平的提高,利用長(zhǎng)假旅游的人越來(lái)越多,其公司統(tǒng)計(jì)了2012到2016年五年間本公司職工每年春節(jié)期間外出旅游的家庭數(shù),具體統(tǒng)計(jì)數(shù)據(jù)如表所示:

年份x

2012

2013

2014

2015

2016

家庭數(shù)y

6

10

16

22

26

(1)利用所給數(shù)據(jù),求出春節(jié)期間外出旅游的家庭數(shù)與年份之間的回歸直線(xiàn)方程y=bx+a,判斷它們之間是否是正相關(guān)還是負(fù)相關(guān);

(2)根據(jù)所求的直線(xiàn)方程估計(jì)該公司2019年春節(jié)期間外出的旅游的家庭數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】公差不為零的等差數(shù)列{an}中,a1 , a2 , a5成等比數(shù)列,且該數(shù)列的前10項(xiàng)和為100,數(shù)列{bn}的前n項(xiàng)和為Sn , 且滿(mǎn)足Sn= ,n∈N*
(1)求數(shù)列{an},{bn}的通項(xiàng)公式;
(2)記得數(shù)列{ }的前n項(xiàng)和為T(mén)n , 求Tn的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知美國(guó)蘋(píng)果公司生產(chǎn)某款iPhone手機(jī)的年固定成本為40萬(wàn)美元,每生產(chǎn)1萬(wàn)只還需另投入16萬(wàn)美元.設(shè)蘋(píng)果公司一年內(nèi)共生產(chǎn)該款iPhone手機(jī)x萬(wàn)只并全部銷(xiāo)售完,每萬(wàn)只的銷(xiāo)售收入為R(x)萬(wàn)美元,且R(x)=

(1)寫(xiě)出年利潤(rùn)W(萬(wàn)美元)關(guān)于年產(chǎn)量x(萬(wàn)只)的函數(shù)解析式;

(2)當(dāng)年產(chǎn)量為多少萬(wàn)只時(shí)蘋(píng)果公司在該款iPhone手機(jī)的生產(chǎn)中所獲得的利潤(rùn)最大?并求出最大利潤(rùn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某城市實(shí)施了機(jī)動(dòng)車(chē)尾號(hào)限行,該市報(bào)社調(diào)查組為了解市區(qū)公眾對(duì)“車(chē)輛限行”的態(tài)度,隨機(jī)抽查了50人,將調(diào)查情況進(jìn)行整理后制成下表:

年齡(歲)

[15,25)

[2535)

[3545)

[45,55)

[55,65)

[6575]

頻數(shù)

5

10

15

10

5

5

贊成人數(shù)

4

6

9

6

3

4

(Ⅰ)請(qǐng)估計(jì)該市公眾對(duì)“車(chē)輛限行”的贊成率和被調(diào)查者的年齡平均值;

)若從年齡在[15,25),[25,35)的被調(diào)查者中各隨機(jī)選取兩人進(jìn)行追蹤調(diào)查,記被選4人中不贊成“車(chē)輛限行”的人數(shù)為,求隨機(jī)變量的分布列和數(shù)學(xué)期望;

若在這50名被調(diào)查者中隨機(jī)發(fā)出20份的調(diào)查問(wèn)卷,記為所發(fā)到的20人中贊成“車(chē)輛限行”的人數(shù),求使概率取得最大值的整數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

1當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;

2若函數(shù)在區(qū)間上有1個(gè)零點(diǎn),求實(shí)數(shù)的取值范圍;

3是否存在正整數(shù),使得上恒成立?若存在,求出k的最大值;若不存在,說(shuō)明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】過(guò)雙曲線(xiàn) =1(a>0,b>0)的右焦點(diǎn)F作一條直線(xiàn),當(dāng)直線(xiàn)斜率為l時(shí),直線(xiàn)與雙曲線(xiàn)左、右兩支各有一個(gè)交點(diǎn);當(dāng)直線(xiàn)斜率為3時(shí),直線(xiàn)與雙曲線(xiàn)右支有兩個(gè)不同的交點(diǎn),則雙曲線(xiàn)離心率的取值范圍為(
A.(1,
B.(1,
C.( ,
D.( ,

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】數(shù)據(jù)顯示,某公司2018年上半年五個(gè)月的收入情況如下表所示:

月份

2

3

4

5

6

月收入(萬(wàn)元)

1.4

2.56

5.31

11

21.3

根據(jù)上述數(shù)據(jù),在建立該公司2018年月收入(萬(wàn)元)與月份的函數(shù)模型時(shí),給出兩個(gè)函數(shù)模型供選擇.

(1)你認(rèn)為哪個(gè)函數(shù)模型較好,并簡(jiǎn)單說(shuō)明理由;

(2)試用你認(rèn)為較好的函數(shù)模型,分析大約從第幾個(gè)月份開(kāi)始,該公司的月收入會(huì)超過(guò)100萬(wàn)元?(參考數(shù)據(jù),

查看答案和解析>>

同步練習(xí)冊(cè)答案