已知函數(shù),且 w.w.w.k.s.5.u.c.o.m                                  

(1) 試用含的代數(shù)式表示b,并求的單調(diào)區(qū)間;

(2)令,設(shè)函數(shù)處取得極值,記點(diǎn)M (,),N(,),P(),  ,請(qǐng)仔細(xì)觀察曲線在點(diǎn)P處的切線與線段MP的位置變化趨勢(shì),并解釋以下問(wèn)題:

(I)若對(duì)任意的m (, x),線段MP與曲線f(x)均有異于M,P的公共點(diǎn),試確定t的最小值,并證明你的結(jié)論;

(II)若存在點(diǎn)Q(n ,f(n)), x n< m,使得線段PQ與曲線f(x)有異于P、Q的公共點(diǎn),請(qǐng)直接寫出m的取值范圍(不必給出求解過(guò)程)w.w.w.k.s.5.u.c.o.m                                  


解析:

解法1

(Ⅰ)依題意,得

.

從而

①當(dāng)a>1時(shí),

當(dāng)x變化時(shí),的變化情況如下表:

x

+

+

單調(diào)遞增

單調(diào)遞減

單調(diào)遞增

由此得,函數(shù)的單調(diào)增區(qū)間為,單調(diào)減區(qū)間為

②當(dāng)時(shí),此時(shí)有恒成立,且僅在,故函數(shù)的單調(diào)增區(qū)間為R

③當(dāng)時(shí),同理可得,函數(shù)的單調(diào)增區(qū)間為,單調(diào)減區(qū)間為

綜上:

當(dāng)時(shí),函數(shù)的單調(diào)增區(qū)間為,單調(diào)減區(qū)間為;

當(dāng)時(shí),函數(shù)的單調(diào)增區(qū)間為R;

當(dāng)時(shí),函數(shù)的單調(diào)增區(qū)間為,單調(diào)減區(qū)間為.

(Ⅱ)由

由(1)得增區(qū)間為,單調(diào)減區(qū)間為,所以函數(shù)在處取得極值,故M()N()。

觀察的圖象,有如下現(xiàn)象:

①當(dāng)m從-1(不含-1)變化到3時(shí),線段MP的斜率與曲線在點(diǎn)P處切線的斜率之差Kmp-的值由正連續(xù)變?yōu)樨?fù)。

②線段MP與曲線是否有異于H,P的公共點(diǎn)與Kmp的m正負(fù)有著密切的關(guān)聯(lián);

③Kmp-=0對(duì)應(yīng)的位置可能是臨界點(diǎn),故推測(cè):滿足Kmp的m就是所求的t最小值,下面給出證明并確定的t最小值.曲線在點(diǎn)處的切線斜率

線段MP的斜率Kmp

當(dāng)Kmp-=0時(shí),解得

直線MP的方程為

當(dāng)時(shí),上只有一個(gè)零點(diǎn),可判斷函數(shù)在上單調(diào)遞增,在上單調(diào)遞減,又,所以上沒有零點(diǎn),即線段MP與曲線沒有異于M,P的公共點(diǎn)。

當(dāng)時(shí),.

所以存在使得

即當(dāng)MP與曲線有異于M,P的公共點(diǎn)

綜上,t的最小值為2.

(2)類似(1)于中的觀察,可得m的取值范圍為

解法2:

(1)同解法一.

(2)由,令,得

由(1)得的單調(diào)增區(qū)間為,單調(diào)減區(qū)間為,所以函數(shù)在處取得極值。故M().N()

 (Ⅰ) 直線MP的方程為

線段MP與曲線有異于M,P的公共點(diǎn)等價(jià)于上述方程在(-1,m)上有根,即函數(shù)

上有零點(diǎn).

因?yàn)楹瘮?shù)為三次函數(shù),所以至多有三個(gè)零點(diǎn),兩個(gè)極值點(diǎn).

.因此, 上有零點(diǎn)等價(jià)于內(nèi)恰有一個(gè)極大值點(diǎn)和一個(gè)極小值點(diǎn),即內(nèi)有兩不相等的實(shí)數(shù)根.

等價(jià)于         即

又因?yàn)?img width=63 height=17 src="http://thumb.zyjl.cn/pic1/1899/sx/0/32200.gif">,所以m 的取值范圍為(2,3),從而滿足題設(shè)條件的r的最小值為2.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=alnx+2x+3(a∈R)
(1)若函數(shù)f(x)在x=2處取得極值,求實(shí)數(shù)a的值;
(Ⅱ)若a=1,設(shè)g(x)=f(x)+kx,且不等式g′(x)≥0在X∈(0,2)上恒成立,求實(shí)數(shù)k的取值范圍;
(Ⅲ)在(I)的條件下,將函數(shù)f(x)的圖象關(guān)于y軸對(duì)稱得到函數(shù)φ(x)的圖象,再將函數(shù)φ(x)的圖象向右平移3個(gè)單位向下平移4個(gè)單位得到函數(shù)w(x)的圖象,試確定函數(shù)w(x)的單調(diào)性并根據(jù)單調(diào)性證明ln[2.3.4…(n+1))]2≤n(n+1)(n∈N,n>l).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù) w.w.w.k.s.5.u.c.o.m          

   (I)試用含的代數(shù)式表示;

   (Ⅱ)求的單調(diào)區(qū)間;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù). w.w.w.k.s.5.u.c.o.m    

(Ⅰ)求的值域和對(duì)稱中心;    (Ⅱ)設(shè),且,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知向量,,,設(shè). w.w.w.k.s.5.u.c.o.m             

 (Ⅰ)求函數(shù)的最小正周期.  (Ⅱ)若,且,求的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案