已知函數(shù),且 w.w.w.k.s.5.u.c.o.m
(1) 試用含的代數(shù)式表示b,并求的單調(diào)區(qū)間;
(2)令,設(shè)函數(shù)在處取得極值,記點(diǎn)M (,),N(,),P(), ,請(qǐng)仔細(xì)觀察曲線在點(diǎn)P處的切線與線段MP的位置變化趨勢(shì),并解釋以下問(wèn)題:
(I)若對(duì)任意的m (, x),線段MP與曲線f(x)均有異于M,P的公共點(diǎn),試確定t的最小值,并證明你的結(jié)論;
(II)若存在點(diǎn)Q(n ,f(n)), x n< m,使得線段PQ與曲線f(x)有異于P、Q的公共點(diǎn),請(qǐng)直接寫出m的取值范圍(不必給出求解過(guò)程)w.w.w.k.s.5.u.c.o.m
略
解法1
(Ⅰ)依題意,得
由.
從而
令
①當(dāng)a>1時(shí),
當(dāng)x變化時(shí),與的變化情況如下表:
x | |||
+ | - | + | |
單調(diào)遞增 | 單調(diào)遞減 | 單調(diào)遞增 |
由此得,函數(shù)的單調(diào)增區(qū)間為和,單調(diào)減區(qū)間為。
②當(dāng)時(shí),此時(shí)有恒成立,且僅在處,故函數(shù)的單調(diào)增區(qū)間為R
③當(dāng)時(shí),同理可得,函數(shù)的單調(diào)增區(qū)間為和,單調(diào)減區(qū)間為
綜上:
當(dāng)時(shí),函數(shù)的單調(diào)增區(qū)間為和,單調(diào)減區(qū)間為;
當(dāng)時(shí),函數(shù)的單調(diào)增區(qū)間為R;
當(dāng)時(shí),函數(shù)的單調(diào)增區(qū)間為和,單調(diào)減區(qū)間為.
(Ⅱ)由得令得
由(1)得增區(qū)間為和,單調(diào)減區(qū)間為,所以函數(shù)在處取得極值,故M()N()。
觀察的圖象,有如下現(xiàn)象:
①當(dāng)m從-1(不含-1)變化到3時(shí),線段MP的斜率與曲線在點(diǎn)P處切線的斜率之差Kmp-的值由正連續(xù)變?yōu)樨?fù)。
②線段MP與曲線是否有異于H,P的公共點(diǎn)與Kmp-的m正負(fù)有著密切的關(guān)聯(lián);
③Kmp-=0對(duì)應(yīng)的位置可能是臨界點(diǎn),故推測(cè):滿足Kmp-的m就是所求的t最小值,下面給出證明并確定的t最小值.曲線在點(diǎn)處的切線斜率;
線段MP的斜率Kmp
當(dāng)Kmp-=0時(shí),解得
直線MP的方程為
令
當(dāng)時(shí),在上只有一個(gè)零點(diǎn),可判斷函數(shù)在上單調(diào)遞增,在上單調(diào)遞減,又,所以在上沒有零點(diǎn),即線段MP與曲線沒有異于M,P的公共點(diǎn)。
當(dāng)時(shí),.
所以存在使得
即當(dāng)MP與曲線有異于M,P的公共點(diǎn)
綜上,t的最小值為2.
(2)類似(1)于中的觀察,可得m的取值范圍為
解法2:
(1)同解法一.
(2)由得,令,得
由(1)得的單調(diào)增區(qū)間為和,單調(diào)減區(qū)間為,所以函數(shù)在處取得極值。故M().N()
(Ⅰ) 直線MP的方程為
由
得
線段MP與曲線有異于M,P的公共點(diǎn)等價(jià)于上述方程在(-1,m)上有根,即函數(shù)
上有零點(diǎn).
因?yàn)楹瘮?shù)為三次函數(shù),所以至多有三個(gè)零點(diǎn),兩個(gè)極值點(diǎn).
又.因此, 在上有零點(diǎn)等價(jià)于在內(nèi)恰有一個(gè)極大值點(diǎn)和一個(gè)極小值點(diǎn),即內(nèi)有兩不相等的實(shí)數(shù)根.
等價(jià)于 即
又因?yàn)?img width=63 height=17 src="http://thumb.zyjl.cn/pic1/1899/sx/0/32200.gif">,所以m 的取值范圍為(2,3),從而滿足題設(shè)條件的r的最小值為2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知函數(shù)且 w.w.w.k.s.5.u.c.o.m
(I)試用含的代數(shù)式表示;
(Ⅱ)求的單調(diào)區(qū)間;查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知函數(shù). w.w.w.k.s.5.u.c.o.m
(Ⅰ)求的值域和對(duì)稱中心; (Ⅱ)設(shè),且,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知向量,,,設(shè). w.w.w.k.s.5.u.c.o.m
(Ⅰ)求函數(shù)的最小正周期. (Ⅱ)若,且,求的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com