【題目】祖暅(公元前5~6世紀(jì))是我國齊梁時代的數(shù)學(xué)家,是祖沖之的兒子,他提出了一條原原理:“冪勢既同,則積不容異.”這里的“冪”指水平截面的面積,“勢”指高。這句話的意思是:兩個等高的幾何體若在所有等高處的水平截面的面積相等,則這兩個幾何體體積相等。設(shè)由橢圓 所圍成的平面圖形繞 軸旋轉(zhuǎn)一周后,得一橄欖狀的幾何體(稱為橢球體),課本中介紹了應(yīng)用祖暅原理求球體體積公式的做法,請類比此法,求出橢球體體積,其體積等于( )
A. B.
C. D.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左、右焦點分別是,且離心率為,點為橢圓上的動點,面積最大值為.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)是橢圓上的動點,且直線經(jīng)過定點,問在軸上是否存在定點,使得若存在,請求出定點,若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,圓的參數(shù)方程為(為參數(shù)),以為極點,軸的非負(fù)半軸為極軸建極坐標(biāo)系,直線的極坐標(biāo)方程為
(Ⅰ)求的極坐標(biāo)方程;
(Ⅱ)射線與圓C的交點為與直線的交點為,求的范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列滿足,且.
(Ⅰ)求,的值;
(Ⅱ)是否存在實數(shù),,使得,對任意正整數(shù)恒成立?若存在,求出實數(shù)、的值并證明你的結(jié)論;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知方程恰有四個不同的實數(shù)根,當(dāng)函數(shù)時,實數(shù)K的取值范圍是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】近年電子商務(wù)蓬勃發(fā)展,平臺對每次成功交易都有針對商品和快遞是否滿意的評價系統(tǒng).從該評價系統(tǒng)中選出200次成功交易,并對其評價進(jìn)行統(tǒng)計,網(wǎng)購者對商品的滿意率為0.70,對快遞的滿意率為0.60,商品和快遞都滿意的交易為80
(1)根據(jù)已知條件完成下面的2×2列聯(lián)表,并回答能否有99%認(rèn)為“網(wǎng)購者對商品滿意與對快遞滿意之間有關(guān)系”?
對快遞滿意 | 對快遞不滿意 | 合計 | |
對商品滿意 | 80 | ||
對商品不滿意 | |||
合計 | 200 |
(2)若將頻率視為概率,某人在該網(wǎng)購平臺上進(jìn)行的3次購物中,設(shè)對商品和快遞都滿意的次數(shù)為隨機(jī)變量,求的分布列和數(shù)學(xué)期望E(x).
附:,
0.050 | 0.010 | 0.001 | |
K | 3.841 | 6.635 | 10.828 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com