等比數(shù)列{an}的公比0<q<1,a172=a24,則使a1+a2+…+an
1
a1
+
1
a2
+…+
1
an
成立的正整數(shù)n的最大值為
 
考點:數(shù)列與不等式的綜合
專題:等差數(shù)列與等比數(shù)列
分析:求出數(shù)列的前n項和,根據(jù)不等式之間的關(guān)系即可得到結(jié)論.
解答: 解:設(shè)首項為a1,公比為q,依題意有(a1q162=a1q23,
∴a1q9=1.則a1>0,且a1=q-9,
∵{an}為等比數(shù)列,∴{
1
an
}是以
1
a1
為首項,
1
q
為公比的等比數(shù)列.
則不等式等價為
a1(1-qn)
1-q
1
a1
(1-(
1
q
)
n
)
1-
1
q
,
∵0<q<1,把a1=q-9,即a12=q-18代入整理,
得q-18(1-qn)>q1-n(1-qn),
∴q-18>q1-n,
∴-18<1-n,
即n<19,
∵n∈N*,∴n的最大值為18.
故答案為:18.
點評:本題主要考查等比數(shù)列的通項公式和前n項和的應(yīng)用,考查數(shù)列與不等式的應(yīng)用,綜合性較強,運算量較大.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知圓C:x2+y2-2x+4y+m=0.
(1)若直線x+2y-4=0與這個圓相交于M,N兩點,且CM⊥CN(C為圓心),求m的值;
(2)當(dāng)m=-4,是否存在斜率為1的直線l,使l被圓C截得的弦AB為直徑的圓過原點?若存在,求出直線l的方程,若不存在,說明理由;
(3)若直線l:y=kx與(2)中的圓C交于P,Q兩點,點M(0,a)滿足MP⊥MQ,若k>3時,求滿足條件的實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

等比數(shù)列{an}的前n項和為Sn,前n項倒數(shù)和為Tn,則前n項之積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線l與曲線f(x)=x2+3x-3+2lnx相切,則直線l的斜率的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a>b>0,m=
a-b
,n=
a
-
b
,則m,n的大小關(guān)系是m
 
n.(選>,=,<)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

等比數(shù)列{an]中,“a1<a3”是“a4<a6”的( 。
A、充分而不必要條件
B、必要而不充分條件
C、充要條件
D、既不充分又不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

“m<0”是“方程x2+my2=1表示雙曲線”的( 。
A、充分不必要條件
B、必要不充分條件
C、充要條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在長為8的線段AB上任取一點C,現(xiàn)作一矩形,鄰邊長分別等于AC、BC的長,則該矩形面積大于15的概率(  )
A、
1
6
B、
1
4
C、
2
3
D、
4
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,正三角形ABC的中線AF與中位線DE相交于點G,已知△A′ED是△AED繞DE旋轉(zhuǎn)過程中的一個圖形,現(xiàn)給出下列四個命題:
①動點A′在平面ABC上的射影在線段AF上;
②恒有平面A′GF⊥平面BCED;
③三棱錐A′-FED的體積有最大值;
④直線A′E與BD不可能垂直.
其中正確的命題的序號是
 

查看答案和解析>>

同步練習(xí)冊答案