【題目】要產(chǎn)生[3,3]上的均勻隨機(jī)數(shù)y,現(xiàn)有[0,1]上的均勻隨機(jī)數(shù)x,則y可取為(  )

A. 3x B. 3x

C. 6x3 D. 6x3

【答案】C

【解析】法一:利用伸縮和平移變換進(jìn)行判斷;

法二:由0≤x≤1,得-3≤6x-3≤3,故y可取6x-3.故選C.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),

1用定義證明:在R上是單調(diào)減函數(shù);

2是奇函數(shù),求值;

32的條件下,解不等式

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓,直線被圓所截得的弦的中點(diǎn)為

1求直線的方程;

2若直線與圓相交, 的取值范圍;

3是否存在常數(shù),使得直線被圓所截得的弦中點(diǎn)落在直線上?若存在, 求出的值;若不存在,說明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,

1判斷的奇偶性并說明理由;2求證:函數(shù)上是增函數(shù);

3,求實(shí)數(shù)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】與均勻隨機(jī)數(shù)特點(diǎn)不符的是(  )

A. 它是[0,1]內(nèi)的任何一個實(shí)數(shù)

B. 它是一個隨機(jī)數(shù)

C. 出現(xiàn)的每一個實(shí)數(shù)都是等可能的

D. 是隨機(jī)數(shù)的平均數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了參加市高中籃球比賽,某中學(xué)決定從四個籃球較強(qiáng)的班級的籃球隊(duì)員中選出人組成男子籃球隊(duì),代表該地區(qū)參賽,四個籃球較強(qiáng)的班級籃球隊(duì)員人數(shù)如下表:

班級

高三(7)班

高三(17)班

高二(31)班

高二(32)班

人數(shù)

12

6

9

9

1)現(xiàn)采取分層抽樣的方法從這四個班中抽取運(yùn)動員,求應(yīng)分別從這四個班抽出的隊(duì)員人數(shù);

2)該中學(xué)籃球隊(duì)奮力拼搏,獲得冠軍.若要從高三年級抽出的隊(duì)員中選出兩位隊(duì)員作為冠軍的代表發(fā)言,求選出的兩名隊(duì)員來自同一班的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】用反證法證明命題若直線ABCD是異面直線,則直線AC、BD也是異面直線的過程歸納為以下三個步驟:

①則AB、C、D四點(diǎn)共面,所以AB、CD共面,這與AB、CD是異面直線矛盾;

②所以假設(shè)錯誤,即直線AC、BD也是異面直線;

③假設(shè)直線AC、BD是共面直線.

則正確的序號順序?yàn)?/span>______________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)

1當(dāng)時,求函數(shù)的定義域;

2是否存在實(shí)數(shù),使函數(shù)遞減,并且最大值為1,若存在,求出的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)是實(shí)數(shù),,

1)若函數(shù)為奇函數(shù),求的值;

2)試用定義證明:對于任意,上為單調(diào)遞增函數(shù);

3)若函數(shù)為奇函數(shù),且不等式對任意恒成立,求實(shí)數(shù)的取值范圍。

查看答案和解析>>

同步練習(xí)冊答案