【題目】要產(chǎn)生[-3,3]上的均勻隨機(jī)數(shù)y,現(xiàn)有[0,1]上的均勻隨機(jī)數(shù)x,則y可取為( )
A. -3x B. 3x
C. 6x-3 D. -6x-3
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),
(1)用定義證明:在R上是單調(diào)減函數(shù);
(2)若是奇函數(shù),求值;
(3)在(2)的條件下,解不等式
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓,直線被圓所截得的弦的中點(diǎn)為.
(1)求直線的方程;
(2)若直線與圓相交, 求的取值范圍;
(3)是否存在常數(shù),使得直線被圓所截得的弦中點(diǎn)落在直線上?若存在, 求出的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,
(1)判斷的奇偶性并說明理由;(2)求證:函數(shù)在上是增函數(shù);
(3)若,求實(shí)數(shù)的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】與均勻隨機(jī)數(shù)特點(diǎn)不符的是( )
A. 它是[0,1]內(nèi)的任何一個實(shí)數(shù)
B. 它是一個隨機(jī)數(shù)
C. 出現(xiàn)的每一個實(shí)數(shù)都是等可能的
D. 是隨機(jī)數(shù)的平均數(shù)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了參加市高中籃球比賽,某中學(xué)決定從四個籃球較強(qiáng)的班級的籃球隊(duì)員中選出人組成男子籃球隊(duì),代表該地區(qū)參賽,四個籃球較強(qiáng)的班級籃球隊(duì)員人數(shù)如下表:
班級 | 高三(7)班 | 高三(17)班 | 高二(31)班 | 高二(32)班 |
人數(shù) | 12 | 6 | 9 | 9 |
(1)現(xiàn)采取分層抽樣的方法從這四個班中抽取運(yùn)動員,求應(yīng)分別從這四個班抽出的隊(duì)員人數(shù);
(2)該中學(xué)籃球隊(duì)奮力拼搏,獲得冠軍.若要從高三年級抽出的隊(duì)員中選出兩位隊(duì)員作為冠軍的代表發(fā)言,求選出的兩名隊(duì)員來自同一班的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】用反證法證明命題“若直線AB、CD是異面直線,則直線AC、BD也是異面直線”的過程歸納為以下三個步驟:
①則A、B、C、D四點(diǎn)共面,所以AB、CD共面,這與AB、CD是異面直線矛盾;
②所以假設(shè)錯誤,即直線AC、BD也是異面直線;
③假設(shè)直線AC、BD是共面直線.
則正確的序號順序?yàn)?/span>______________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)
(1)當(dāng)時,求函數(shù)的定義域;
(2)是否存在實(shí)數(shù),使函數(shù)在遞減,并且最大值為1,若存在,求出的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)是實(shí)數(shù),,
(1)若函數(shù)為奇函數(shù),求的值;
(2)試用定義證明:對于任意,在上為單調(diào)遞增函數(shù);
(3)若函數(shù)為奇函數(shù),且不等式對任意恒成立,求實(shí)數(shù)的取值范圍。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com