6.已知$|\overrightarrow a|=2$,$|\overrightarrow b|=3$,$|2\overrightarrow a-\overrightarrow b|=3$,則向量$\overrightarrow a,\overrightarrow b$夾角的余弦值為$\frac{2}{3}$.

分析 設(shè)向量$\overrightarrow a,\overrightarrow b$夾角為θ,則由題意可得4${\overrightarrow{a}}^{2}$-4$\overrightarrow{a}•\overrightarrow$+${\overrightarrow}^{2}$=16-4•2•3•cosθ+9=9,計算求得cosθ的值.

解答 解:∵$|\overrightarrow a|=2$,$|\overrightarrow b|=3$,$|2\overrightarrow a-\overrightarrow b|=3$,設(shè)向量$\overrightarrow a,\overrightarrow b$夾角為θ,
則4${\overrightarrow{a}}^{2}$-4$\overrightarrow{a}•\overrightarrow$+${\overrightarrow}^{2}$=16-4•2•3•cosθ+9=9,求得cosθ=$\frac{2}{3}$,
故答案為:$\frac{2}{3}$.

點(diǎn)評 本題主要考查兩個向量的數(shù)量積的定義,求向量的模的方法,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.下列函數(shù)中,在(0,2)上為增函數(shù)的是(  )
A.y=-3x+2B.y=$\frac{3}{x}$C.y=x2-4x+5D.y=3x2+8x-10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知|an|是遞增的等差數(shù)列,a1,a2是函數(shù)f(x)=x2-10x+21的兩個零點(diǎn).
(1)求數(shù)列|an|的通項公式;
(2)記bn=an×3n,求數(shù)列|bn|的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知P為橢圓$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{16}$=1上的一個點(diǎn),M,N分別為圓(x+3)2+y2=1和圓(x-3)2+y2=4上的點(diǎn),則|PM|+|PN|的最小值為7.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.某校高三(1)班的一次數(shù)學(xué)測試成績的莖葉圖和頻率分布直方圖都受到不同程度的破壞,但可見部分如下,據(jù)此解答如下問題.

(1)求全班人數(shù)及分?jǐn)?shù)在[80,90)之間的頻數(shù),并估計該班的平均分?jǐn)?shù);
(2)若要從分?jǐn)?shù)在[80,100]之間的試卷中任取兩份分析學(xué)生失分情況,在抽取的試卷中,求至少有一份分?jǐn)?shù)在[90,100]之間的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知函數(shù)$f(x)=\frac{1}{3}{x^3}-m{x^2}+m-1$的單調(diào)減區(qū)間是(0,4),則實數(shù)m=(  )
A.-1B.1C.-2D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.(1)等比數(shù)列{an}中,${a_3}=\frac{3}{2},{S_3}=\frac{9}{2}$,求公比q的值.
(2)已知數(shù)列{an}中,${S_n}={n^2}$,求數(shù)列{an}通項公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知集合M={x|(x+1)(x-4)<0},N={x|x|<3}則M∩N=( 。
A.(-3,-1)B.(-1,3)C.(3,4)D.(-1,4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.直線x•(2t-1)-y(2t+1)+1=0(t∈R)的傾斜角為α,則α的范圍是( 。
A.0≤α<$\frac{π}{4}$或$\frac{3π}{4}$<α≤πB.$\frac{π}{4}$≤α≤$\frac{3π}{4}$且α≠$\frac{π}{2}$C.0≤α<$\frac{π}{4}$或$\frac{3π}{4}$<α<πD.0≤α<$\frac{π}{4}$

查看答案和解析>>

同步練習(xí)冊答案