若曲線為焦點在軸上的橢圓,則實數(shù),滿足(  )
A.B.C.D.
C

試題分析:將方程變?yōu)闃?biāo)準(zhǔn)方程為,由已知得,,則,選C.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在平面直角坐標(biāo)系中,已知分別是橢圓的左、右焦點,橢圓與拋物線有一個公共的焦點,且過點.
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)直線與橢圓相交于、兩點,若(為坐標(biāo)原點),試判斷直線與圓的位置關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,設(shè)P是圓x2+y2=25上的動點,點D是P在x軸上的投影,M為PD上一點,且|MD|=|PD|,當(dāng)P在圓上運動時,求點M的軌跡C的方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

若F1,F(xiàn)2是雙曲線與橢圓的共同的左、右焦點,點P是兩曲線的一個交點,且為等腰三角形,則該雙曲線的漸近線方程是          。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知橢圓)和橢圓)的離心率相同,且.給出如下三個結(jié)論:
①橢圓和橢圓一定沒有公共點;   ②;      ③
其中所有正確結(jié)論的序號是________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知橢圓:的左、右焦點分別為,橢圓上點滿足. 若點是橢圓上的動點,則的最大值為(    )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

連接橢圓 (a>b>0)的一個焦點和一個頂點得到的直線方程為x-2y+2=0,則該橢圓的離心率為(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知點是橢圓上的動點,分別是橢圓的左右焦點,為原點,若的角平分線上的一點,且,則長度的取值范圍是(    )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知橢圓方程為=1(a>b>0),它的一個頂點為M(0,1),離心率e,則橢圓的方程為(  ).
A.=1B.=1C.y2=1D.y2=1

查看答案和解析>>

同步練習(xí)冊答案