A. | 20($\sqrt{2}$+$\sqrt{6}$)海里/時 | B. | 20($\sqrt{6}$-$\sqrt{2}$)海里/時 | C. | 20($\sqrt{3}$+$\sqrt{6}$)海里/時 | D. | 20($\sqrt{6}$-$\sqrt{3}$)海里/時 |
分析 根據(jù)題意畫出相應的圖形,在三角形PMN中,根據(jù)sin∠MPN與sin∠PNM的值,以及PM的長,利用正弦定理求出MN的長,除以時間即可確定出速度.
解答 解:由題意知PM=20海里,∠PMB=15°,∠BMN=30°,∠PNC=45°,
∴∠NMP=45°,∠MNA=90°-∠BMN=60°,
∴∠PNM=105°,
∴∠MPN=30°,
∵sin105°=sin(60°+45°)=sin60°cos45°+cos60°sin45°=$\frac{\sqrt{2}+\sqrt{6}}{4}$,
∴在△MNP中利用正弦定理可得:
MN=$\frac{20sin30°}{sin105°}$=10($\sqrt{6}$-$\sqrt{2}$)海里,
∴貨輪航行的速度v=20($\sqrt{6}$-$\sqrt{2}$)海里/小時.
故選B.
點評 此題考查了正弦定理在解三角形中的應用,解決實際問題的關鍵是要把實際問題轉(zhuǎn)化為數(shù)學問題,然后利用數(shù)學知識進行求解.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | ②③ | B. | ② | C. | ①②③ | D. | ④ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com