【題目】如圖所示,在等腰梯形中,,,直角梯形所在的平面垂直于平面,且.

1)證明:平面平面;

2)點(diǎn)在線(xiàn)段上,試確定點(diǎn)的位置,使平面與平面所成的二面角的余弦值為.

【答案】1)證明見(jiàn)解析;(2)點(diǎn)為線(xiàn)段中點(diǎn)

【解析】

1)推導(dǎo)出平面,,,從而平面,由此能證明平面平面;
2)以為坐標(biāo)原點(diǎn),以所在直線(xiàn)分別為軸、軸建立空間直角坐標(biāo)系,利用向量法能求出點(diǎn)為線(xiàn)段中點(diǎn)時(shí),平面與平面所成的二面角的余弦值.

解:(1)因?yàn)槠矫?/span>平面,

平面平面,

,平面,所以平面,

平面,所以,

在△中,,,

由余弦定理得,,

所以,所以.

,,所以平面

平面,所以平面平面;

2)以為坐標(biāo)原點(diǎn),以,所在直線(xiàn)分別為軸、軸建立如圖所示的空間直角坐標(biāo)系,,,,,,

,,,

設(shè),則.

設(shè)平面的一個(gè)法向量為

,即,取,得.

設(shè)平面的一個(gè)法向量為

,得

,得

因?yàn)槠矫?/span>與平面所成的二面角的余弦值為,

所以,

整理得,

解得(舍去),

所以點(diǎn)為線(xiàn)段中點(diǎn)時(shí),平面與平面所成的二面角的余弦值為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,四邊形為邊長(zhǎng)為2的菱形,,的中點(diǎn),,

(Ⅰ)求證:平面;

(Ⅱ)求直線(xiàn)與平面所成的角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABC中,ABBC,∠ACB60°DAC中點(diǎn),ABD沿BD翻折過(guò)程中,直線(xiàn)AB與直線(xiàn)BC所成的最大角、最小角分別記為α1,β1,直線(xiàn)AD與直線(xiàn)BC所成最大角、最小角分別記為α2,β2,則有(

A.α1α2,β1β2B.α1α2β1β2

C.α1α2,β1β2D.α1α2,β1β2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)F是橢圓的左焦點(diǎn),過(guò)點(diǎn)F且斜率為正的直線(xiàn)與E相交于AB兩點(diǎn),過(guò)點(diǎn)A、B分別作直線(xiàn)AMBN滿(mǎn)足AMl,BNl,且直線(xiàn)AM、BN分別與x軸相交于MN.試求|MN|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】汽車(chē)的“燃油效率”是指汽車(chē)每消耗1升汽油行駛的里程,下圖描述了甲、乙、丙三輛汽車(chē)在不同速度下的燃油效率情況,下列敘述中錯(cuò)誤的是(

A.消耗1升汽油乙車(chē)最多可行駛5千米.

B.以相同速度行駛相同路程,三輛車(chē)中,甲車(chē)消耗汽油最多.

C.甲車(chē)以80千米/小時(shí)的速度行駛1小時(shí),消耗10升汽油.

D.某城市機(jī)動(dòng)車(chē)最高限速80千米/小時(shí),相同條件下,在該市用丙車(chē)比用乙車(chē)更省油.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),對(duì)于函數(shù)有下述四個(gè)結(jié)論:①函數(shù)在其定義域上為增函數(shù);②對(duì)于任意的,都有成立;③有且僅有兩個(gè)零點(diǎn);④若,則在點(diǎn)處的切線(xiàn)與在點(diǎn)處的切線(xiàn)為同一直線(xiàn).其中所有正確的結(jié)論有( )

A.①②③B.①③C.②③④D.③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知三棱臺(tái)的下底面是邊長(zhǎng)為2的正三角形,上地面是邊長(zhǎng)為1的正三角形.在下底面的射影為的重心,且.

1)證明:平面

2)求直線(xiàn)與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,已知曲線(xiàn)的參數(shù)方程為為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系,曲線(xiàn)的極坐標(biāo)方程為,設(shè)曲線(xiàn)與曲線(xiàn)的公共弦所在直線(xiàn)為l.

1)在直角坐標(biāo)系下,求曲線(xiàn)與曲線(xiàn)的普通方程;

2)若以坐標(biāo)原點(diǎn)為中心,直線(xiàn)l順時(shí)針?lè)较蛐D(zhuǎn)后與曲線(xiàn)、曲線(xiàn)分別在第一象限交于A、B兩點(diǎn),求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知F1(﹣c,0),F2c,0)分別為雙曲線(xiàn)1a0b0)的左、右焦點(diǎn),以坐標(biāo)原點(diǎn)O為圓心,c為半徑的圓與雙曲線(xiàn)在第二象限交于點(diǎn)P,若tanPF1F2,則該雙曲線(xiàn)的離心率為_____

查看答案和解析>>

同步練習(xí)冊(cè)答案
<track id="67wq7"><tfoot id="67wq7"><em id="67wq7"></em></tfoot></track>