20.已知函數(shù)f(x)是定義R在上的奇函數(shù),當x>0時,f(x)=2x-3,則不等式f(x)≤-5的解集為(-∞,-3].

分析 根據(jù)函數(shù)奇偶性的性質求出當x<0的解析式,討論x>0,x<0,x=0,解不等式即可.

解答 解:若x<0,則-x>0,
∵當x>0時,f(x)=2x-3,
∴當-x>0時,f(-x)=2-x-3,
∵f(x)是定義在R上的奇函數(shù),
∴f(-x)=2-x-3=-f(x),
則f(x)=-2-x+3,x<0,
當x>0時,不等式f(x)≤-5等價為2x-3≤-5即2x≤-2,無解,不成立;
當x<0時,不等式f(x)≤-5等價為-2-x+3≤-5即2-x≥8,
得-x≥3,即x≤-3;
當x=0時,f(0)=0,不等式f(x)≤-5不成立,
綜上,不等式的解為x≤-3.
故不等式的解集為(-∞,-3].
故答案為:(-∞,-3].

點評 本題主要考查不等式的解集的求解,根據(jù)函數(shù)奇偶性的性質求出函數(shù)的解析式是解決本題的關鍵.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

10.在平行四邊形ABCD中,已知AB=2,AD=l,∠BAD=60°,若E,F(xiàn)分別是BC,CD的中點,則$\overrightarrow{BF}•\overrightarrow{DE}$=( 。
A.2B.-2C.$\frac{5}{4}$D.$-\frac{5}{4}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左右焦點分別為F1,F(xiàn)2,且經過點P(0,$\sqrt{5}$),離心率為$\frac{2}{3}$,過點F1的直線l與直線x=4交于點A
(I)  求橢圓C的方程;
(II) 當線段F1A的垂直平分線經過點F2時,求直線l的方程;
(III)點B在橢圓C上,當OA⊥OB,求線段AB長度的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.已知橢圓$M:\frac{x^2}{a^2}+{y^2}=1({a>1})$右頂點、上頂點分別為A、B,且圓O:x2+y2=1的圓心到直線AB的距離為$\frac{{\sqrt{3}}}{2}$.
(1)求橢圓M的方程;
(2)若直線l與圓O相切,且與橢圓M相交于P,Q兩點,求|PQ|的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.從1,2,3,4,5,6這六個數(shù)中一次隨機地取2個數(shù),則所取2個數(shù)的和能被3整除的概率為$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.在△ABC中,角A,B,C的對邊分別為a,b,c.已知2cosA(bcosC+ccosB)=a.
(1)求角A的值;
(2)若$cosB=\frac{3}{5}$,求sin(B-C)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.已知a,b,c為正實數(shù),$\frac{1}{{a}^{3}}$+$\frac{1}{^{3}}$+$\frac{1}{{c}^{3}}$+27abc的最小值為m,解關于x的不等式|x+l|-2x<m.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.在等差數(shù)列{an}中,a2=3,a3+a6=11
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)設bn=an+$\frac{1}{{2}^{{a}_{n}}}$,其中n∈N*,求數(shù)列{bn}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.執(zhí)行如圖所示的程序框圖,則輸出的結果為(  )
A.10B.17C.24D.26

查看答案和解析>>

同步練習冊答案