(本小題16分)
已知拋物線的頂點在坐標原點,對稱軸為軸,焦點在直線上,直線與拋物線相交于兩點,為拋物線上一動點(不同于),直線分別交該拋物線的準線于點
(1)求拋物線方程;
(2)求證:以為直徑的圓經(jīng)過焦點,且當為拋物線的頂點時,圓與直線相切。
(1)
(2)證明見解析
(1)依題意,焦點,拋物線方程為!4分

(2)由,,
。            ……………………6分
,則,
直線,令,
,即, ……………………8分
同理,直線,令,得,
,……………………10分
,∴,
∴以為直徑的圓經(jīng)過焦點。  ……………………13分
為拋物線的頂點時,,可得中點,即圓心
,,∴,即,
∴圓與直線相切。
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

(滿分12分)直線l 與拋物線y2 = 4x 交于兩點A、BO 為原點,且= -4.
(I)       求證:直線l 恒過一定點;
(II)     若 4≤| AB | ≤,求直線l 斜率k 的取值范圍;
(Ⅲ) 設拋物線的焦點為F,∠AFB = θ,試問θ 能否等于120°?若能,求出相應的直線l 的方程;若不能,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題13分)已知定點及橢圓,過點的動直線與該橢圓相交于兩點.
(1)若線段中點的橫坐標是,求直線的方程;
(2)在軸上是否存在點,使為常數(shù)?若存在,求出點的坐標;如果不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

設F1、F2為曲線C1的焦點,P是曲線C2與C1的一個交點,則的值為        

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

(坐標系與參數(shù)方程選做題)已知直線與拋物線
交于A、B兩點,則實數(shù)的取值范圍是                 

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分13分)
為了考察冰川的融化狀況,一支科考隊在某冰川上相距8km的A,B兩點各建一個考察基地。視冰川面為平面形,以過A,B兩點的直線為x軸,線段AB的的垂直平分線為y軸建立平面直角坐標系(圖6)在直線x=2的右側,考察范圍為到點B的距離不超過km區(qū)域;在直線x=2的左側,考察范圍為到A,B兩點的距離之和不超過km區(qū)域。
(Ⅰ)求考察區(qū)域邊界曲線的方程;
(Ⅱ)如圖6所示,設線段P1P2,P2P3是冰川的部分邊界線(不考慮其他邊界線),當冰川融化時,邊界線沿與其垂直的方向朝考察區(qū)域平行移動,第一年移動0.2km,以后每年移動的距離為前一年的2倍,求冰川邊界線移動到考察區(qū)域所需的最短時間。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知直線與曲線只有一個交點,則實數(shù)    .

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

方程所表示的曲線的對稱性是  (   )
A.關于軸對稱B.關于軸對稱
C.關于直線對稱D.關于原點對稱

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

曲線在點(1,1)處的切線方程為             。

查看答案和解析>>

同步練習冊答案