(本小題8分)在平面直角坐標(biāo)系xOy中,點(diǎn)A(-1,-2)、B(2,3)、C(-2,-1)。

(1)求以線段AB、AC為鄰邊的平行四邊形兩條對(duì)角線的長;

(2)設(shè)實(shí)數(shù)t滿足()·=0,求t的值。

 

【答案】

(1)BC=、AD=

(2)

【解析】(1)法1:由題設(shè)知,則

所以

故所求的兩條對(duì)角線的長分別為、。

法2設(shè)該平行四邊形的第四個(gè)頂點(diǎn)為D,兩條對(duì)角線的交點(diǎn)為E,則:

E為B、C的中點(diǎn),E(0,1)

又E(0,1)為A、D的中點(diǎn),所以D(1,4)

 故所求的兩條對(duì)角線的長分別為BC=、AD=;

(2)由題設(shè)知:=(-2,-1),。

由()·=0,得:,

從而所以。

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(本題滿分18分,其中第1小題5分,第2小題5分,第3小題8分)

在平面直角坐標(biāo)系中,已知為坐標(biāo)原點(diǎn),點(diǎn)的坐標(biāo)為,點(diǎn)的坐標(biāo)為,其中.設(shè).

(1)若,,,求方程在區(qū)間內(nèi)的解集;

(2)若點(diǎn)是過點(diǎn)且法向量為的直線上的動(dòng)點(diǎn).當(dāng)時(shí),設(shè)函數(shù)的值域?yàn)榧?img width=21 height=17 src="http://thumb.zyjl.cn/pic1/1899/sx/18/333018.gif" >,不等式的解集為集合. 若恒成立,求實(shí)數(shù)的最大值;

(3)根據(jù)本題條件我們可以知道,函數(shù)的性質(zhì)取決于變量、的值. 當(dāng)時(shí),試寫出一個(gè)條件,使得函數(shù)滿足“圖像關(guān)于點(diǎn)對(duì)稱,且在取得最小值”.(說明:請(qǐng)寫出你的分析過程.本小題將根據(jù)你對(duì)問題探究的完整性和在研究過程中所體現(xiàn)的思維層次,給予不同的評(píng)分.)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:上海市普陀區(qū)2010屆高三第二次模擬考試?yán)砜茢?shù)學(xué)試題 題型:解答題

(本題滿分18分,其中第1小題5分,第2小題5分,第3小題8分)
在平面直角坐標(biāo)系中,已知為坐標(biāo)原點(diǎn),點(diǎn)的坐標(biāo)為,點(diǎn)的坐標(biāo)為,其中.設(shè).
(1)若,,求方程在區(qū)間內(nèi)的解集;
(2)若點(diǎn)是過點(diǎn)且法向量為的直線上的動(dòng)點(diǎn).當(dāng)時(shí),設(shè)函數(shù)的值域?yàn)榧?img src="http://thumb.zyjl.cn/pic5/tikupic/89/5/a05qa.gif" style="vertical-align:middle;" />,不等式的解集為集合. 若恒成立,求實(shí)數(shù)的最大值;
(3)根據(jù)本題條件我們可以知道,函數(shù)的性質(zhì)取決于變量、的值. 當(dāng)時(shí),試寫出一個(gè)條件,使得函數(shù)滿足“圖像關(guān)于點(diǎn)對(duì)稱,且在取得最小值”.(說明:請(qǐng)寫出你的分析過程.本小題將根據(jù)你對(duì)問題探究的完整性和在研究過程中所體現(xiàn)的思維層次,給予不同的評(píng)分.)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:上海市普陀區(qū)2010屆高三第二次模擬考試?yán)砜茢?shù)學(xué)試題 題型:解答題

(本題滿分18分,其中第1小題5分,第2小題5分,第3小題8分)

在平面直角坐標(biāo)系中,已知為坐標(biāo)原點(diǎn),點(diǎn)的坐標(biāo)為,點(diǎn)的坐標(biāo)為,其中.設(shè).

(1)若,,,求方程在區(qū)間內(nèi)的解集;

(2)若點(diǎn)是過點(diǎn)且法向量為的直線上的動(dòng)點(diǎn).當(dāng)時(shí),設(shè)函數(shù)的值域?yàn)榧?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012052111495710937700/SYS201205211152429218217731_ST.files/image019.png">,不等式的解集為集合. 若恒成立,求實(shí)數(shù)的最大值;

(3)根據(jù)本題條件我們可以知道,函數(shù)的性質(zhì)取決于變量、的值. 當(dāng)時(shí),試寫出一個(gè)條件,使得函數(shù)滿足“圖像關(guān)于點(diǎn)對(duì)稱,且在取得最小值”.(說明:請(qǐng)寫出你的分析過程.本小題將根據(jù)你對(duì)問題探究的完整性和在研究過程中所體現(xiàn)的思維層次,給予不同的評(píng)分.)

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本小題8分)在平面直角坐標(biāo)系中,直線與拋物線=2相交于、兩點(diǎn),如果直線過點(diǎn)(3,0),求的值。

查看答案和解析>>

同步練習(xí)冊(cè)答案